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ABSTRACT
J

Most éerospace structural materials exhibit some degree of aniso-
tropic strain ‘hardening. During the past few years, several methods
have appeared in the literature for introducing inelastic isotropic
material behavior effects into existing matrix analysis procedures using
the incremental theory of plasticity. A review is presented of these
methods and a step-by-step routine knowr as the "constant strain” method
is selected for the development of an anisotropic inelastic procedure.

A simple truss with one redundant 1s used to indicate the basic
idess of the approach. Then the prccedure 1s generalized to the more
important case of blaxially stressed structures. Nodal stresses are
. evaluated step-wise for increasing loed through the use of an influence
coefficient equation. The inelastic (plastic and creep) strains at one
load level are used as initial strains at the subsequent level to account
for nonlinear effects. The anisotropic behavior 1s considered by using
a proposed extension of Hu's strain hardening theory.

Several analyses of an aluminum alloy (2024-T4) shear lag structure,
which has been tested previously for the Air Force, are carried out,
first assuming isotropic and then anisotropic material properties. The
correlation between test results and those predicted by isotropic theory
is reasonably good. The anisotropic analysis gives predicted results
which are in slightly more consistent agreement with the test data.

The procedure is also modified to give an isotroplc deformation
theory solution, which produces numerical results in a much shorter com-.
puter time than required for the incremental theory solution. In the
case of the shear lag structure investigated, the results by the two
theories are in very close agreement.

Creep test results of an 1100-F aluminum shear lag structure are
also avallable. An analysis of this structure by the proposed incre-
mental method 1is carried out and its predictions too are 1n reasonably
good agreement wlth the test data. The 1100-F material 1s very nearly
isotropic and no testing of structures exhibiting enlsotropic creep is
known to have been performed. Hence the anisotropic creep capasbility
of the proposed method cannot be checked out against tests gt this time.
A ssample cslculation 1s pevertheless carrlied out for a hypothetical
material having this characteristic. '

The approach presented, which is simple in concept and execution,
is found to be a reasonably good phenomenological model of =n exceedingly
camplex physical problem. The accampanying diglital camputer progrem is
believed to be very versatile, and well suited for the inclusion of any
other types of material nonlinearity that may be of interest.
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SYMBOLS

Rectangular matrix 7
Column matrix

Member load, any losd acting directly on a member
utl ordinary stress camponent (normal or shear) at
a node point -

The normal stress camponents and shear stress com-
ponent at node N - another designation for Sy

Effective stress at node N

Relaxed effective stress at node N

Reference stress in Ramberg-0sgood Equatlon

1.:.th stress component in linear redundant structure
due to the mth' unit applied load

u®® stress cagponent in linear redundant structure
due to the v . unit initial strain

th member losd in the redundant structure due to

n®P applied loed

1*® penber loed in the redundant structure caused

by & unit initial strain at the j°° member loed

xn‘l"h epplied load
t

v h canponent of initisl strain

vth cdnponent, of plastic astrain

vth camponent of creep strain
Effective plastic strain st node N
Effective creep strain at node N

Total (elastic, plestic, and creep) strain component

. Engineering shear strain

Error

Young's modulus
x
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T Temperature

t* Equivalent time at start nf creep cycle calculatlon

At Cycle duralion (elapsed time) -

a8,y ‘ Material constents in creep strain equ%tion

oy, Subscripted anisotrobic paremeters :,o‘

A Increment (prefix) |

n,o Nonlinear parsmeters in Ramberg-Osgood equation

k , Cycle desigzxation, superscript

N Nodal index I ;

u,v | Nodal stress component or strain‘;'sccmponen’c index,
related to the nodal Index =as mdicated in equation

Yi 3 . Simple directional characterist;.c stress

Oy " Uniaxial stress in the x-x, y~y direction

’ exe ‘y'y ’ Plastic strain in the x-x, y-y direction ‘d.ue to

uniexiel x-x, y-y stress

ny Shear atress in.x-y plane

&y | Shear strafin in x-y plane

xi
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SECTION I

INTRODUCTION

With the introduction of high-speed, large-capacity, digital computers,
a mumber of investigators (References 1,4,T) have asdapted essentislly
linear matrix asnalysis methods to the solution f redundant structures
where nonlinear material plasticity and creep properties are considered.
These methods have been either iterative or non-iterative step-by-step
numerical procedures.

'The present work is an effort to explore, revise, and extend the
matrix method of analysis in order to apply 1t to a range of practicel
aserospace structural problems exhibiting inelastic isotrople or inelastic
anlsotropic materlal behavior. Thus, the intent 1s to concentrate upon
methods which are able to predict inelastic strain distributions in
irregular idealized structures in a blaxlal stress state where materials
exhibit strain hardening and creep properties representative of those em-
ployed in serospace construction.

A discussion of complete load reversal, slthough desirsble for
plastic fatigue studies, 1s not included because the theoretical founda-
tion for such a procedure is apparently not yet fully developed. The
present formulation of elastic, plastic and creep loesding, followed by
elastic unloading, while restrictive, 1s nevertheless of practical inter-
est,

Of the proposed snalytical methods, one by Denke (Reference 1) has

developed naturally from the matrix force method of analysils and consists .

of including nonlinear plastic and creep terms in the equations for the
gaps at those cuts which are required to make the structure statically
determinate. 'The redundant forces, required to close the geps and make

the structure continuous, are obtained by solving thesge nonlinear equations
by a Newton-Raphson procedure.

A second method reported by Kobayashi and Weikel (Reference 2) has
been developed fram the direct stiffness method., Here, forces occurring
as a consequence of the inelastlc effects are included in the nodal force
equations. The nodal displacements (or displacement rstes, where creep

'ig considered) obteined by solving these equations impose equilibrium

at the nodes under the action of internel 1oads, surface tractions, and
presceribed displecements.

When the inelastic effects are accounted for by a flow (or incremental)
theory, the deformation 1s an accumuiation of increments each governed by,
the prevailing stress. Thus, when either of the methods just described
is used, one must obtain (for the governing equations) a series of solu=-
tions, with one solution corresponding to each losd increment., This re-
quires & considerable amount of computer time even for medium-sized

enalyses,

o . i R e g
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The approach recammended here, in addition to being conceptually
simple, does not require repeated matrix inversions. It was developed
fram that proposed vy R. Gallsgher, J. Padlog and others at Bell Aero-

"system (References 3,4). Input data, as in the case with these other
" nonllinear anelyses, are generated by an elastlc analysis; however, for

this approach, either the matrix force method or direct stiffness method
can be usazd. The problem, formulated in terms of standard infliuence
coefficients for applici load and initial straln, is reduéed from a non-
linear to a linear one by using those strains obtained at the previous
load level to approximate the current inelastlc strains.

Development of the anisotropic analysis is based on an extension
of the proposed anisotropic theory of Hu, Reference 1l1. The constant-
anisotropic-coefficient assumption of Hu is replaced by one in which
the coefficients are allowed to vary with the level of stress. The
formulstion 1is then a simple modification of the isotrcplic procedure.
It is also shown that anisotroplc creep can be included in a manner
similar to the isotropic creep.
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'SECTION II , -

INELASTIC MATRIX METHODS

A. Formulation

An inelastic structural analysis can be carried out in two steps.
The first is the standard elastic solution where internal stresses and
accampanying strains are related through Hooke's law. The second step,
the modification of this elastic system to include inelastic strains,
is analogous to a procedure for including superimposed thermal strains.
The inelastic strains are defined as the differences between the total
strains and the elastic strains and are generally functions of the final
stresses, not those of the linear, elastic state.

The simple, pin-jointed, single-redundant truss, pictured in Figure
(1), 11lustrates the basic notions more clearly. All bars are consid-
ered to be elastic, except the vertical diagonal which can become plastic
and has a stress-strain relation represented by the curve shown in Fig-
ure (2). The applied load P 1s large enough to cause member 3 to became
plastic. ‘ ‘ ‘

A solution might be obtained by first simply ignoring plastic strain
in member 3 and assuming all members elastic. The resulting stress
would then be of magnitude o. The actual stress for member 3, of lower

magnitude due to plastic yielding, is designated c(k) and the assoclated
inelastic strain (k) in Figure (2). These stresses and strafns are

related in the following equation.
o(k) =0+ Fe(k) (1)
where:
a(k) is the actual final stress
c 1s the elastic stress

e(k) the inelastic strain

r the redundant elastic stress for a unit value of
initial strain . ]

To be more specific I' is equal to the redundant stress in member 3 -
corresponding to a unit initial strain in member 3. Note that I’ must
be negative to cause a reduction of stress in the diagonal member. °

An importent feature to be observed sbout Equation 1 is that,
since the inelastic strain e(X) 1s a nonlinear function of the £inal
stress c(k), this equation is really a nonlinear relation to be solved

3
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for c(k). This charscteristic will always be present in the analyses
to be discussed in this report.

Equatior 1 can be generalized to provide stresses in all members
of the structure and provide for inelastic strains in ali members for
a variety of applied loads. This basic influence coefficient equation®
is as follows:

{o,) = [T )(B,) + [T, )e,) @

The oﬁ's are the ordinary stress components at the various node
points of the structure. An element of [Fum] gives the uth

the linear redundant structure due to a unit mth applied load, and
{Pm} represents the actual applied losds. Also, an element of [Fuv]
gives the uth stress component in the linear redundant structure due

to a unit initial strain at the vth stress location in the unloaded,

statically determinate structure. Finally, an element of {ev} repre~
sents the actual initlal strain at the vth stress location.

stress in

The problem is now reduced in essence to the determination of the
inelastic strains to use as the initisl strains {ev} in Equation 2.

For a structure in a load-temperature~time enviromment, this task can
be rather formldsble, because {ev} is a function of local temperature

and time, as well as the local stress history.

B. Example Problem

Continuing our study of the simple truss example of Figure (1), we
now allow all members to go plastic. The exact results for the defor-
mation and stresses in the truss, for nonlinear properties, are easily
obtalned by direct numerical solution of the equations, and hence will
be used without development.

The step-by-step finite element method for determining the stresses
[cu] and strains {ev} involves the use of Equation 2 end a nonlinear

stress-strain relation. This relation will be assumed to be a piece-
wise linear approximation of the Ramberg-Osgood stress-strain relation.

#The derivation of matrices [rhm] and [ruv] is given in Appendix VI.




where e denotes the inelastic (or plastic) strains and 1s given by

6-1
i)

and where
& = total strain
o = nmember stress

E = Young's modulus

do = reference stress (stress at secant modulus of 0.7E)
8 = nonlinear parameter

The first step, in applying the finite element method, is to obtain
~the influence coefficient matrices [I‘m] and [I‘W] for the linear, re-

dundant structure. This requires specification of the geometry of the
structure and the (1linear) material propertles of the individual struc-
tural elements. The geametry of the exsmple truss problem 1s given in
Figure (1). Tr- material is assumed to be an alumimm alloy with the
following consiants.

E = 10 psi, o = 10° pei, @ = 10
The approximate stress-strain curve used matches the Ramberg-Osgood values

at 2000 psi stress intervals.

In this case, we find

) [ ] .207 ,T - .l;élsl' 0207 0207 ' ;
S m.l= f-.203],r.1=10"x| . - 293 - .293 %
um Jqot) W 586 - .293 - .293

for the case of the single applied loed P.




C. Step-by-Step Methods

References 3 and b present what appears to be the simplest possible
approach to this problem fram a camputational standpoint.* A non iter-
. ative step-by-step cslculation is performed in which all quantities in-
cluding the initial strains € are incremented and then assumed to remain

constant in the ensuing load intervel. The inherent difficulty in this
approach' is to establish the connection between successive steps. Two
methods, both of which involve the 1nitial strains from the prior step
to predlct quantities in the current step are suggested. It is antici-
‘pated that by controlling the slze of the interval one msy achieve any
degree of accuracy. ,

The developnent herein is discussed only in the detail necessary to !
analyze the redundant truss of Figure (1) being lnaded for the first time ‘ ’
into the plastic range. Generalization to bisxial plasticity and creep phe-

namena are discussed in the succeeding sections. ;

The step-by-step procedure for solving the problem is introduced by
rewriting Equation 2 in the form :

SR ST RERTA NS
where | |

k is the cycle designation

This can be regarded as the fundamental equation for the non-iterative,
step-by-step methods. The idea in formulating this equation, as indicated
by the cycle designating superscript is that the initial strains of the
previous cycle can be used to approximate the initial strains of the
current cycle. The stralns of the previous cycle may be incorporated in
several ways, two of which constitute the constant stress and the constant
strain methods of analysis.

D. Constant Stress Methodl

As indicated previously, in the step-by-step procedure considered
here, one enters the k2 cycle with applied loads {P ()} and initia1
. strains { ev(k'l)} the latter evaluated during the preceding cycle.

¥These methods make use of devices previcusly used by others to solve
inelastic problems; for example, S. S. Manson at the Lewls Research
Laboratory, NASA, Cleveland, Ohio, has previously carried out ineleastic
analyses of turbine discs involving scmewhat similar techniques
(Reference 5). 6




The first operation of the current cycle 18 to determine { (k)} fram
Equation 3 by direct substitution. The second operation 1s a determination
of { (k)} for use in the next cycle. The constant stress method does
this in the most obvious way, by reading from the given stress-strain
curve the plastic strains {e (k)} corresponding to the o (k)rg (the

reason for the name "constant stress” is thus apparent) The opersation
is indicated schematically in Figure (2). ‘

The results of the application of this method to the example truss
roblem are shown in Figure (4), where the stress in the vertical member
?Ba:r #3) has been plotted versus load. These results displesy a striking
defect of the method due to the development of a sudden end catastrophie
divergence, whose ongset depends upmm step size. Thls dependence is such
that any attempt to improve accursa 5y reducing step size only hastens
the occurrence of divergence. An ¢« _.snation of this behavior is given -
in Appendix III. Because of this defect, the constant stress method in
this form must be eliminsgted fram consideration as an acceptable method
for general use.

E. Constant Strain Method

The first operstion of the constant gstraln method is exazztly the
same as the flrst operation of the constant stress method; k) 1s ‘

evalua.ted by direct substitution in Equation 3. Thereafter, one de-
termines €, (k) for use in the next cycle as follows. Referring to
Flgure (3), for each member, point A is determined with stress-strain
coordinatgs ‘cu(k) and cu(k)/E + ev(k“l). ‘A relexed stresgs ou*(k) is

now calculated with the ssme total strain, corresponding to point B on
the given stress-strain curve. Note that here the total strain, rather
than stress, remains unchanged--hence the neme "constant strain” method.

The required initial strain cv(k) is the inelastic strzin ¢(k) correspond-
ing to the relaxed stress, as indicated on Figure (3).

The results of epplying the constant strain method to the truss
problem, for the three step sizes 5000, 500 and 50 1b., are shown in
Figure (5). The accuracy, for a given step size, is not as good as
that of the constant stress method, but the analysis is now free of any
ingtebility. The constant strain method is therefore selected for
further use herein. The discussion of the step size and of a method of -
monitoring it 1s left for a later section.

L




SECTION ITI
ISOTROPIC ELASTIC-PLASTIC ANALYSIS

A. Biaxial Theory

Having presented the simple truss example of the step-by-step pro-.
cedure, we proceed now to the case of more practical interest -- a bi-
axlally stressed structure. The new procedure is identical to the one
already discussed for the simple truss with one exception. Because of
the blaxlal stress we can no longer work directly from the stress-straln
curve to obtain the plastic strains for use in Equation 3; instead, we
must employ the well-known concept of an "effective" stress-strain re-
lationship in conjunction with o von Mises type yield condition and the
associated incremental flow relations, :

'.[he bilaxial theory 1is described by a summary of the steps to be
used as a gulde for a detailed description which follows. The constant
strain method used here is a step-by-step procedure which, after incre-
menting the applied load, can be applied in four parts:

1. Obta.in the stress canponents at each node using the hasice
Equation 3 by assuming the initial strains fron tne previous
‘load level, -

2. Using these stresses, c&lcula*e an effective stress at each
node.,

‘3. Assume that the effective stress-strain relstion for the
material, modified by including the elastic strain, corresponds
to data measured in a simple uniaxial tension test. Using this,
calculate the effective strain corresponding to the effective
stress.

4, Using the incremental flow relations, determine the inelastic
strain increments. The proportionality constant in these
equations 1s the ratio of the effective strain increment to
‘the effective stress.

At this point in the ca.lculation , the applied load can be incremented
again and the cycle repeated.

When calculating the ordinary stresses {ou(k)} for the K0 load

level using Bquation 3 (Step 1), it is convenient to re-identify these
stresses by means of a new subscript N, as follows:
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The stresses are thus arranged in groups of three camponents (two normal
and one shear) at each mode point N.
| (x)

We now celculate the corresponding effective stresses 'éN
of the nodes fram the von Mises type formula (Step 2)

-l 2 2 2 %
o ey @) (@) @) o

Note that by this definition 5{K) must be positive and 1s proportional

to the octahedral shear stress. This formula together with the stress-
strain data constitutes the strain hardening criterion.

for each

_ We now go to the tensile stress-strain curve (vhich 1s also the 3 vs
5/E + &(p) curve) for the material of interest and, using the constant
strain method, read fram it the corresponding effective plastic strain
'é(p)l(ﬁ). This operstion (Step 3) is identical to thet previously de-
scribed for the unlaxial case on page T.

In accordance with the flow theory of plasticity, the increment in
the effective strain AE(p)(k) over that of the preceding interval must

‘be calculated (Step 4). ‘I’he increment will be either positive or zero,

depending upon whether plastic 1oading or elastic unloading (or reloading)
is teking place. - 'nms »

s - - D (6a)

. when E‘r;k) 1s greater than any previous Gy (inelastic strain increasing)
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when aék) is smaller then a previous &y (elastic unloadir. :

inelastic strain constant)

The increments in the ordinary plastic strain camponents may now -

¢ relcading,

be obtained using a Prandtl-Reuss incremental relationship.

] Ae(p),(qk)

49
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The total, ordinary plastic strain ccmponents are obtained by

e () . ) o)
e(P)(k) e<p)(.k'l’ Ae(p.\éﬁl&
(e - <Le<p)(k‘” o (el ) 8
@ | eED | e ®
\ : y \ : J \ : /

-
5

These’ camponents together with the new applied loads P

(k+1)

may be substituted in Equation 3 to obtaln c(k+1) in the next load

A cycle.
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B. Determination of Calculation Step Size

It should be noted that, according to the constant strain method,

every predicted value of effective strain E(p)§k) together with 1its
accampanying value of effective stress BNk) constitutes an approxi-
mation to a point on the actual effective stress-straln curve. Tﬁe
excellence of the approximation is directly related to the loading in-
crement, as is shown in the truss results Figure (5). Thus it 1s only
necessary to monitor this agreement for one or more of the critically
loaded nodes to determine whether the step size 1s satisfactory. This
is 1llustrated below in connection with the shear lag structure investi-
gation.

C. Descriptlon of Shear Lag Structure

Several very useful tests have been performed for the Alr Force

. upon shear lag structures (Reference 7). The structure, losded as shown

in Figure (6), is an integrally machined part of 2024-Th aluminum alloy
stiffened along the loeding (y) axis. The stiffener is tapered in
thickness from each end towards the center of the structure.

This structure was chosen originally because 1t is simple to work
with and .;ell adapted to anslysis by both matrix methods when appropri-
ate ldealizetions are employed. When tension forces are applied to the
endg of the stiffener, high stress gradients are induced in a mann¢er
analogous to those encountered in ailrcraft structures. .

The material properties essential to this enalysis were obtained
from tension tests reported in Reference T. These tests were performed
on coupons, machined from the parent plate, in the longitudinal or
x-direction and the transverse or y-direction of Figure (6). The data
resulting from these tests, Figure (11), indicate the presence of a
considerable degree of anisotropy. In the present study, three pilece-
wise linear representations of stress-strain curves were fitted to these

points; two, ROl end RO2, in Figure (11), are equivalent to Ramberg-Osgood

curves used in Reference T7; the third, ROM, is a Grumman modificagtion.
The modulus of elasticity of all the curves 1s taken as 10.3 x 10° psi.
Note also that the maximum strains recorded are of the order of 0.010
in/in, wheveas the maximum strains reached in the shear lag tests are
around 0.020 in/in. Thus there 1s some doubt as to whether the idealized
curve correctly represents the test material in this high strain region.

The locations of the straln gages for the test of the stiffened
plete are shown in Figure (13). The plate was loaded by applying tension
to the stiffener in steps of 1000 pounds to 6000 pounds, gage readings
being taken at each step. It was then unloaded in steps of 1500 pounds
to zero, and finally progressively loaded to failure. Buckling occurred
at a loed of 23,000 pounds and fracture at 25,800 pounds. Data fram this
test are plotted on Figures (1h4) through (22).
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D. Rlastic Shear Lag Strﬁcture Anglysis

The idealizations of the upper right quandrent of the shear lag
structure for a direct stiffness and a force method analysis are shown
in Figures (7) and (8) respectively. A typical element of the force
method analysis, Figure (9), consists of conventional bars and rectangu-
lar shear panels. Many previous ideslizations have amitted the Polsson's
Ratio effect. The present idealization, however, incorporates this
effect in the manner described in Appendix II.

The basic element of the stiffness epproach consists of a cluster
of four "Turner triangles" (References 8,9) to form a rectangle as shown in
Figure (10). The manner of obtaining the stresses is discussed in
Appendix I.

An elastic analysis under a unit applied losd was performed by both
the force and the stiffness methods. These results are campared in
Appendix I.

The inelastic analysis can be made using eltker of the two approaches
(stiffness or force method). For the present investigation, only the force
method is used.

B. Flow Theory Shedr Lag Structure Anglysis

The inelastic analysis was carried out using the Fortran 2 program
listed in Appendix V. This program 1s capable of carrying out 1sotropic
or anisotropic, plastic or creep flow theory analyses. The flow charts
and instructions for preparation and submission of data are also included

in Appendix V.

Before comparing the analytlical and test results, let us look at a
plot of the tensile stress-straln curve, ROM, and campare 1t with the
predicted effective stress-strain relatiomnship for varlous step sizes.
Such a camparison is found in Pigure (12) for the node corresponding to
the center of the specimen which 1s the point of highest strain in the
structure. It can be seen there that for a step size of AP = 500 lb.,
the sgreement is rather poor. For AP = 50 1lb. the agreement 1s much
better, while for AP = 5 1b., the predicted value lles directly on the
gtress-strain curve. The IEM TOS4 camputer time for this best result and
a msximm load of P = 16,760 1b. is gpproximately 20 minutes.

The predicted strain distributions are shown in Pigures (14) through

(21), together with the corresponding test values, along the two strain
gage lines. In these plots, the calculated results are linearly inter-
polated values between node points. Figures (14) end (15) give elastic
results; the agreement with test data is seen to be rather good, giving
' the necessary confidence in the accuracy of the dbasic influence co-
efficient matrices. It is observed also that the specimcn achleves its
basic purpose of displeying a pronounced shear lag effect with the
highest strain occurring at the central node, as expected.
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As thg applied loed increases through 7070 1bs., the strains at the
central node became plastic. During the tests, the strain gsges
continued to function through en applied load level of 14,600 1b.; beyond
this point the x-gage falled to record. The y-gage falled also above a
load level of 16,760 1b., which, consequently, is the highest level con-
sidered in the comparison of test and analysis even though the plate did
not buckle until P = 23,000 1b. .

The proportional limit for the tes™ specimen materisl occurs at a
strain of approximately .00k in/in, as shown in Figure (11). Bearing this
in mind during an examination o® Figures (16) through (21), it is seen that
pPlastic behavior is primarily confined to a fairly small region around
the central node, and we thus have a csse of contained plasticity. . The
analysis predicts a very proncunced strain redistribution extending same-
what beyond .this region. This is indicated by a camparison of the plastic
results with extrapolated elastic results shown as dotted curves on Fig-
ures (20) and (21). ' ‘

As for asgreement with test values, the analysis substantially undbr-
predicts the strain gage readings where plasticity 1s most pronounced.
Since the elastic reecults agree so much better, one must assume that the
"difficulty lies samewhere in the plasticity part of the correlation. It
was mentioned previously that the ideallzation of the stress-strain curve
RO2M of Figure (11) was open to question at the high strain end because
of the sbsence of test points. Accordingly, an sdditional run was made
for a revised curve extending horizontally beyond the last indicated test
point. The plastic strains at the critical central node are increased ~ °
approximately 10% by so doing. This represents an appreciable closing
of the gap, but the gap nevertheless remains. N

Calculations were also made based upon the previously mentioned stress-
strain curves ROl and RO2 of Figure (11). The results for the central node
are shown on Figure (22). As might be expected, they depart appreclably
fram the ROM predictions. ,

F. Deformation Theory Analysis

Solutions by a deformatlon theory have traditionally been considered
to be more easily obtainable than flow theory solutions. This is, of
course, because only the stresses at the final applied load level need
be ¢onsidered, rather than the stress histories developed during loading.
It is therefore of interest to determine whether similar benefits are
attainable In the case of the finlte element analyses currently being
considered. ’

Once sgain, a solution of Equation 3 is required, this time such that
the 1nitial strains €, satisfy the deformation theory of plasticity. This

canbehcccmplished as follows. Egquation 3, the "kth cycle“ stress .
equation of the preceding sectlion, can be used intact if it 1s understood

that Plgk) is the pesk load at which the results are required and does not

change fram one cycle to another as before. We must iterate to a solution
in order to obtein a satisfactory approximation to the plastic strains.

13




The intra-cycle procedure employed for the determination of the

equivalent strain for the k th cycle is the same as before, namely the
constant strain method. At this point, however, the equivalent strain
itself, not its increment, 1s resolved into the node plastic strains by
utllizing an engineering adaptation of the incremental relations,
Equations T, thus: ‘ '

w. W)

«(p 2 "
.'é(p),gk) _
ol FCARVARCA IS

(k) - 1/2 (k)]

e(p)(k)

[}

é(p)gﬁ) —————agk;q [30;1;)]

These are now availlable for the stress equation of the next cycle.

Three analyses, one at P = 11,600 1bs., one at P = 14,600 1bs.,
and one at P = 16,760 1lbs. were performed on the shear lag specimen by
this deformation theory procedure. The results were practically ldentical
with those shown in Figures (16) to (21). The convergence to each of
these results was obtalned after less than thirty cycles of lteration.
The machine time for each calculation was approximately four minutes.

In the case of solutions like this, where the two analyses give
practically identical results, the deformation spprosch is naturally
very attractive because of the greatly reduced machine time. However,
the question remains of determining when to expect the results to agree
in this manner.

The IBM progrem presented In Appendix V cannot be used for deforma-

tion theory analyses. However, minor changes can be mede in the program
to permit calculations of this type to be carried out.
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SECTION IV
ISOTROPIC ELASTIC-PLASTIC-CREEP ANALYSIS

A. Introduction to Creep Theory

Strains due to creep constitute an sdditional form of inelastic strain,
and can be handled in a way analogous to that already discussed for bi-

" axial plasticity by the flow theory. It is only necessary to select a

method for evaluating these time-dependent strains based upon the material
properties and to add them to the plastic strains prior to insertion in
the basic Equation 3. .

A femilisr relationship used to match the creep behavior in a tensile

creep test, performed at constant stress and constant temperature, is
(Reference 4): :

ele) = at¥(ePo-1) (20)
1n which ' | '
e(c) 1is the tensile creep.strain

t | 13 the elapsed time |

o is .the constant tenslle stress

a,B,y are empirical constants for the particular test
temperature

For this analysis the assumption is made that there exists an effec-
tive creep strain %(c) in a bilaxial situation which can be calculated
using Equation 10. In doing this the stress o is taken to be the von
Miges effective stress obtained from Equation 5. The further assumption
is maede that this effective creep strain can be resolved into nodal creep
strains by use of = Prandtl-‘{eusa type of flow 1a:w.

The creep strain c‘a.lculation must be generalized to situations in
which the stresses vary with time. One well-known procedure for doing

' this, the strain-hardening rule (Reference 4), has been determined to be

most spproprilate for the present purposes. Its use wlll be described

presently in comnection with the kD calculation cycle.

B. Creep Theory Details

The calculation cycle follows a sequence similar to that described
previously for the isotropic elastic-plastic analysis. An additional
step 1s necessary, Just after the plastic strains are obtained, to de-
termine the creep strains. The intra-cycle order of calculstion 1s as
follows.
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Entering the k0 cycle with applied loads {p ‘(k)}, and with the
initiai strains, plastic and creep, as calculated during the preceding
- cycle, the atresses g (k)} are calcu.lated from Equation 3.

The effective stresses Bn(k) obtained fram Equation 5 are used to
obtain the effective plastic strains.

The creep strain increments at each node, for a specified time step,
are now determined by the strain hardening rule whi¢h relates the strain
at a node to the corresponding stress and strain for fiae previous cycle
by the introduction of, an essumed elapsed time. ’

Referring to Figure (é3) » one goes to thé constant effective stress-
temperature curve (Bk, ™ ) relevant to the node and the cycle, and locates
upon it the point with ordinate ?:(c)(k'l). The corresponding ebscissa, ' ;

designated t*(k) is called -the reference time and 1s generally different :
fram the actual elapsed time at the start of the cycle. The required {

effective creep strain increment Ae(c)(};) is that corresponding to the

inerease in time fram t** to (t + AtK) as shown on Figure (23), Atk

being the selected calculation time increment,

: The increment A%(c)k i1s substituted into the Prandtl-Reuss type in-
cremental relations, Equations 7, together with the stresses indicated
there. The creep initial strains are then obtalined as in Equation 8.

In summary, the steps in the kth calculation take the following
order:

(1) Evaluation of Equation 3 to obtaining the ~tress components,
o, (x) ,

(2) 'I'he calculation of effective stress according to Equation 5

(3) The determination of the node plastic strains

(4) The determination of the node creep strains

(5) The addition of the nodsl plastic. and creep strains to give
the initial strains for the next cycle.

C. Description of Structure and Tests

The description of the shear lag structure to be analyzed in this
section and tests for the'material properties may be found in Reference 7.
The shear lag structure was msmufactured from 1100-F alumimum. It was
of the same physical dimensions as the structure of Figure (6). The
idealization of the upper right quadrant remains unchanged.
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Material properties for the creep snalysis were obtained from uni-
axlal strain-iime tests for constant tensile stress. The temperature
at which these tests were conducted was 206°C, the temperature identical
to that of the structural test. The curves for these tests are presented
in Figure (24) together with the fitted curves from Equation 10. The
conatants of the equation were obtained from Reference 7 and are as
follows:

a = 0.650 x 10~4

0.500

v
B = 0.700 x 1073 1n°/1b

Ordinary tensile stress-straln tests were performed at room tempera-
ture on coupons cut from the x and y orientations of the plate material.
The data and faired curve are presented in Figure (25). Tenslle stress-
strain data for 206°C are also plotted here. These data were obtained
fram the intersections of the teat curves on the zero time axis in Fig-
ure (24). A plecewise linear representation TC1 was fitted to this
latter data.

The location of the strain gages on the structure is given in Fig-
ure (26). The shear lag specimen was tested for a total of three hours
at 206°C. An initial applied load of 1600 1b. was increased to 2020 1B.
at the end of the first hour. It was held constant thereafter to the
end of the test. .

D. Results of Creep Shear Lag Analysisg

The predicted strain distributions along the x~axls and along the
Bec'tion X = 1 ino at t .06 hr-, = 1.10 hr., am t 3-00 h‘!’.
elapsed times, are given in Figures (27) through (32), together with
the experimental data of Reference T. Test data are not availsble for
the y-node strains at the center node, and so this correlation point of
eritical significance does not exist.

The curve ol Figure (33), effective stress versus strain at the
central node, exhiblis the shapes characteristic to the various regioms
of the load-time sequence. The inltial linear segment, representing
elastlc loeding 1s followed by the region of the negative curvature
representing loading into the plastic range, all at assumed zero time.
Thereafter, the applied loasd remains constant for one hour, during which
time there i1s a stress redistribution in the structure due to creep.

This particular node unloads, as evidenced by the reduction in effective
stress, although the total strain 1s growing contimiocusly. The applied
load 18 now increased to 2020 1b, Becanse of the previcus elastic atrain
recovery, the effective stress at first goes up elastically, and then
becanes plastic once more. Once the applied load reaches its final wvalue,
redigtribution due to creep effects again takes place.

In the initlal stages of creep the curve 1s very sensitive to time
increment size and it is necessary to choose exceptionally small time
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increments in this region 1f good acéuracy 18 to be achieved. The time .
increments employed are as shown in Figure (33). ;

Considering the simplicity of the expressions employed to describe
a8 canplex a phencmenon as creep and the liberal assumptions made 4in the
process, the correlation between analysis and experiment, as evidenced
by the preceding graphs and also by Figures (34) and (35), is surprisingly
good. ‘
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SECTION V
ANISOTROPIC ELASTIC-PLASTIC ANALYSIS

A. Anisotropy in Structures

Several "expanding yleld surface" theories for extending the
isotropic plastic theory to provide for anlsotropy have became available
within the last two decades. Each 1s based on experimentally determined
parameters and, therefore, each is blased in favor of specific test data.
The camplexity and amount of testing.required to obtain these parameters -
differ considerasbly. Under these circumstances, no single theory can be
campletely .acceptable, but it is thought that a sultsble theory must, at
least, be capable of evaluating the type of anisotropy associated with
biaxially stressed structures used in flight vehicle design without being
unduly camplex in application. It would be desirable to have the pro-
cedure based on a well-known, asccepted theory.

A particular type of anisotropy, the so-called "orthotropic symmetric”
type, develops during a cold rolling process where the material is length-
ened and thinned with no apprecisble change in width. Since cold rolled
sheet and plate are frequently used 1n aerospace structures, this type of
anisotropy may be anticipated and is considered here.

A theory proposed by Hill, Reference 10, has been wildely accepted
as the mogt stralghtforward extension of the isotropic theory. The formu- ‘
lation, however, 1s not very convenlent for numerical step-by-step campu-
tation. A modification of Hill's theory proposed by Hu, Reference 11,
however, 1s very tractable to formulation into the matrix inelagtic pro-
gram discussed previously in this report. The Hu procedure has two dis-
tinet advantseges: :

(1) It employs a von Mises type hardening surface, associated flow
law and effective stress-strain relationships in appropriate
form,

(2) It requires a xﬁinimum of material data: simple uniaxial and
shear stress-strain tests on coupons cut in the directions of
the orthotropy.

B. Hu's Strain Hardening Theory

A summary of Hu's theory is presented to establish its limitations
and provide background for the necessary modifications to obtaln a more
general theory.

The isotroplc expregsions for effective stress, Equation 5,
associated incremental relations, Equations T, are modified by means of
anisotropic parameters (a ). These are constents in Hu's theory. Here

it 1s more convenient to introduce the 1-1, 2-2, etc.,directions insteed
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of x-x, y-y, etc. The modified expression for the ,é:fective stress 1is

- ‘ 2 2 2
o= [“12("11 - o) * “23("22 - "33) + °’31(-°33 - o39)

2  2 213 | (1,1)

* 30,075 * 3055053 ¢ 3“66"31]

The incremental flow equations are

ml

-
2e, = 5 11 T %2%e T “31°33] _,

dey, - %?,[_ @507 + pn0n - aé 033]
deyq = %—E-P- °'3i°1.1 - p0p, * a33633‘] (12)
de, =3 E“’uh"lzj
deyg = & 3055023-
de31 = %-g ‘3066031-

- ’/,
Equations 11 and 12 are written for the case where the reference axes
are the principal axes of anisotropy.

The anisotropic parameters are determined by means of a total of
six, simple, directional, stress-strain tests (i.e., uniaxial and shear
tests) , where, alternately, all stress camponents are equal to zero
except one. Fram each of the six tests a characteristic stress, such
es an approximate yleld stress, is read off. Then substituting each
of these results into Equation 11 Iin succession, we may write

] )
%p = %3 * ¥p = (%;)2 55 ,";‘(KTS)Z , (13)

=
T3\

the effective characteristic stress

2
q33 = a31 + 023 =(-§—-—)
| 33

the simple direcfional characteristic atress
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It remains to assume an effective stress-effective strain relation-
ship. Hu shows that 1t is ecceptable to assume the stress-strain data
associated with one particuler simple tension test as the effective re-
lationship. It cen be seen fram Equations 13 that thia implies setting
one a,, equal to unity.

Thus, in particular for «., = 1, fram Equations 11 and 12:

22

® = % .
(14)

de = deyp |

Now consider Equation 12 for simple stress-strain tests in the other
dlrections. Then

d = 0.,.C. Q_
‘1 1191173
- . 4z
de33 = %33%33
\ % ‘ '
de12 = 3&1‘1}012"5 (15)
' de
dey3 = 3550,373
d
dey; = 3oggI933
or '
a4 1 de; 1 dey 1 dgy 1 dey 1 dey

These equations 3ay that, with the anisotropic parameters constant for
strain hardening, the simple, stress-incremental straln relations must
be. proportional to the effective stress-incrementel strain relastionship.
The implication 1s that the integrated forms of Equations 15, that is,
the simple, directlonal stress strain curves, are thus prescribed. These
may Or may not be a remsonsble fit to the test data for the material of
interest. Obviously, only when the f£it is good can one hope for Hu's
theory to give acceptable results for sll types of loading.

Beged upon the Hu theory, it becomes relatively éasy to obtain
anisotropic solutions usipg the previously developed isotrople inelastic

procedure end corresponding digitsl computer program. It is only nec-
egsary to substitute the appropriate anlsotropic constants for thelr
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isotroPic counterparts, for which oy "'066 =1, a o, = 3 = a3l.£

C. Extension of Hu's Theory

It is in the determination of the parameters that an‘extension to
Hu's theory is made. Except for the special case pointed out in the pre-
ceding section, these parameters should not be constant for a strain
hardening material, but should be varlsbles dependent upon stress level.
The objective, obviously, is to determine the variation in a menner that
allows for all of the simple, directional stress-strain curves to be
correctly reproduced. This can be accomplirthed by a consideration of
plastic work. -

In the current approach, one continues with the assumption of the
exlstence of an effective stress~-strain relationship. Then the basie
notion is that the anisotroplc parameters sre determined such that, for
equal smounts of plastic work done during simple directional stress
strain tests in all directions, the effective ‘stress level reached will
be identical.

’

Accordingly; for a tensile sﬁecimen in the 1-1 direction, one calcu-
lates the plastic work w performed during a uniaxial test by the formula

v = A./:’;u aell - fa az | (16)
. o - ‘
Let the correspoﬁding maximum stress reached be identified by the supef-
script (I),‘i.e. Oil' For a similer test in the 2-2 direction, and for - _
which the smount of plastic work performed 1is identicel, the corresponding
meximum stress reached is ogz. Since the amounts of work done in the two

cases are the same, 0{1 and cgé'cofrespond to the same effective stress

BI. By means of Equation 11 we have

(51)2 - “u("h)z = “22(":2)2 | an

This expression constitutes a relstionship defining o9 and @y, 83

functions of 3. Similar relationships éan clearly be found for the cther
aii's. Thereafter, the aid's can be determined as functions of @ by re-

course to the o definitions of Equations 13,

It is convenient to again éelec£ the 2-2 direction -stress-strain
curve as the one defining the effective stress-strain relstionship.
This results in o, being equal to unity once more.

22




The actual evaluation of the other o's es functions of & follows
easily. Figure (36) indicates schematically how the plastic work done

in each simple directional stress-strain test can be plotted as s function

of stress. Then for a given smount of plastic work, end reading off the
corresponding stresses oI and oI for exmmple, by Equation 17 one finds

that 1 22 | ;
2 : T
(0752) ' - - ‘
S L (18)

Using this end similar relationships in the other directions, curves
.representing all of the a's as functions of .3 may be constructed. The
incqrporation of thias information in the atep-by-step calculation pro-
cedure 1s discussed in the next section.

D. Anisotropiec Theory Detalls

The detalled step-by-step calculation procedure to be followed in
the case of anisotropic material in a biaxially stressed structure 1is
very simllar to that previously discussed for lsotroplc materials.
Accordingly, only the differences will be stressed. A '

‘As before, one starts the k th calculation cycle by evaluating

{ (x )} by means of Equation 3. This operetion employs the initial
strains of the preceding cycle {cv(p)(k -1 1.

The next Oferation is to evaluafe the effective stresses at each
of the nodes, aNk » by Equation 11, modified ,foi the biaxlal case to

0 . [ oD (k)) - 2q () (ﬂmfg))(ga.nfl{)) . (%«fl{)f
+ 3ofE) (c 31(«]‘))2]% (19)

We continue here our assumption that the 2-2 diréction has been selected
as that 1n which the effectlve stress-strainm relationship is defined;
hence oy = 1.
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Kote that 1f the Hu theory is being used, the a, 5'5 are all known

constanta. If the modified theory is being employed, the varisable oy J‘s
are those that have been evaluated during the preceding cycle, (k-1).
This i1s in keeping with the overall nature of the anslysis as a step-by-
step procedure.

Having determined the bl(qk) 's, one can now go to the curves repre-

' ' (x) (%) (x)
senting the oy 3 's as functions of 3 to evaluate g s 5 and oy .

After heving also determined 'éN(p)(k) and _AEN(p)(k) as before by the

constant strain method, these quantitles mey de substituted into a
finite equivalent of Equations 12 specialized for the biexial case, to
yleld

L

<(){E)
53(p)
pele) %) = _‘%%Nr 1 6 ) - o () °3'N5ﬂ

aa(p) ) ‘
v [ (x) . (x) (kf' (20)

AC(p)mgt) =-—6(N1—0—- G3N_ X5 va3N_2

b=

G SOE T
Ae(P)3N =R 3“1;1; GBN]
N

(x)

~From these, the strain camponents e(p)yy 5", «(p) 3%13. and e(p) 3§k) are

obtained by sddition, as before, using Equation 8.

After incrementing the mpplied load the sequence can now be re-
peated for the next load cycle.

E. Rotation of Axes of Anisotropy

Anisotropic symmetry may occur in a structure for which it 1s con-
venlent to choose coordinate axes that are rotated fram the orthogonal
exes of anisotropy. The corresponding expressions for the inci-enental
flow equations and effective stress equations are derived in Appendix IV.
The derivation 1s limited to the case of blaxial stress where the 3-3
end z~z sxes colncide. A method of obtaining the shear anisotropic co-

- efficients is also indicsted.
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F. Anisotropic Analysis of Shear Lag Structure

It has been pointed out earlier that the 2024-Th eluminum alloy of
the shear lag structure tested for the Air Force (Reference T) displayed
considerable anisotropy as shown in Figure (11). The structure had been
analyzed for lsotropic strain hardening based upon the curve ROZM in
thls figure, and the results discussed in Section III. A corresponding
anisotropic strain hardenirng asnalysis has also been carried out, employing
first the Hu theory and then the proposed extension. :

Material stress-strain data is svallsble along two of the axes of
enisotropy, the rolling or x-x (1-1) direction, and the long transverse cr
y-y (2-2) direction. This data has been plotted and discussed in
connection with Figure (11); it is replotted for convenience in Figure (37).

The sdditional required, but missing, test data is (a) tensile stress-
strain data in the short transverse or z-z (3-3) direction and (b) shear
stress-strain data in the x-y plane. A reasonable assumption to make for
engineering purposes for {(a) is that the long and shert transverse properties
are identical; this is made in the analyses to follow. In the case of (b),
the missing shear data, the following is done. First, a shear stress-strain
curve is obtalned based upon the tensile curve in the rolling direction,
together with the assumption that the material is isotropic and governed by
the incrementasl theory of Section III -- specifically, Equations 5 and T.
Next, a similar shear stress-strain curve based upon the tensile rurve in the
long transverse direction is obtained. Finally, a falred-in average of these
two curves 1s taken to represent the missing shear stress-strain relation.

In order to apply the I"a theory, one must first select four character-
istic stresses to represent the directional stress-strain curves, as dis-
cussed in Section V-B. These are the quantitles Y. Y33 and Y12 of

Y
11’ “22’

Equations 13. We arbitrarily choose the proportional limits from the four

curves just discussed for these values; they are o

Y, = 5lksi
Y, = 32ksl
Y, = 51kst
Y, = 22 ksl

Since the gimple directional stress-strain curve in the 2-2 direc-
tion, i.e. RO2M, 1s selected for the effective stress relationship, the
effective stress characteristic value K 1s also 32 ksi. Substituting
these values in Equetions 13, one can solve for the nccessary anisotropice
paremeters. This Information is all that is required to carry out an
analysis of the shear lag structure by the Eu theory.

As pointed out previously, once the anisotropic parameters 40 @

2
@, and @, have been specified and one of the stress-strain curves
chosen as the effective stress-straln curve, the remaining simple direc-
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tional stress-straln curves are prescribed. Let us now examine the con-
sequences of our current parsmeter selection. Since only test data in
the 1-1 and 2-2 directicns are availsble, we shall concentrate on these.
For this speclal case, Equations 11 and 12 can be esslly manipulsted to-
yield

5 =,/'&I'lcu
(21)
Sen | e

Using these expressions, one can construct a %4 stress-strain curve.

Such a curve i1s shown on Figure (37). As can be seen, the fit with
" the 1-1 test data 1s very poor. Apparently, one could ‘do better by

arbitrarily choosing for the 1-1 characteristic value Yll a much lower

velue than 51 ksl -~ perhaps in the neighborhood of 35 ksl. Nevertheless,
1t 1a clear that in this case 1t would still be impossible to get a -
reglly good fit because of the fundementally different shapes of the two
streas-straln curves, especially in the region of thelr knees. It will
turn out that, in the case of the shear lag structure, this selection

is not critical, because of the fact that stresses in the 1-1 direction
are very low, campared to those in the 2-2 direction. .

In order to carry out an analysis of the shear leg structure based
~ upon the extension to the Hu theory, one must first evaluate the plastic
work done in each of the simple directional stresss-strain tests as a
function of the applicsable stress. Using this informstion in the manner
discussed previously, one can then obtain the anisotroplic parsmeters as
functions of effective stress. This has been done, assuming that it is

sufficlently asccurate to represent the curves by a small number of
connected straight line segments. The key values of the resulting o's
are given in the accampanying table. Corresponding total strains @

( = 5/E+ §) are also 1listed.

s £ %y =2y %y
32000 - 00310  0.39% - ° 1.000 - 0.69T- S
37000 - © .00378 510 1.000  LT55 RERE
’-I-OOOO .001&35 05% 1.000 ’ 0795 Ten
 BB000 00822 .2 1000+ - WBTL e
48000  .0OT3k 809 1.000 95
49000 © - .00B00 T <835 © - +1.000 7 WG18: Lt A
52000 - ..00980 = .8% . . 1'000«; S I S
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In the preceding table, the reduction‘iQ number of independent anisotropic
parsmeters 1s a consequence of the assumptions which had to be made for

the missing stress-strain curves. \ v ‘
The value of unity for U is in accordance with our continued

selection of the tensile stress-strain curve ROZM inthe y-y or 2-2
' ‘ direction as the basis for our effective stress-strain %ionship‘.’

are derived in this case,sll of the simple directional stress-st
curves are matched as closely as desired.

It might be reiterated that, because of the manner in Vh\fﬁtx\t:e\as‘

Using first the anisotropic parsmeters selected as described for N
the Hu theory, and then for 1ts extension, the shear leg structure has = ™~
been analyzed. The results are presented in the next section.

G. Discussion of Results

Same of the highlights of the two anisotropic analyses are pre-
sented in Figures (38) through (40). Corresponding results obtained
previously and based upon lsotroplc theory are also included for cam-
parison.

‘ Figure (38) refers to the central node of the shear lag structure
and shows the variation of the total strains in the x and y directions
with increasing applied load. The 1sotropic result 1s replotted from
Figure (22) -- specifically those curves based upon the effective stress-
strain curve RO2M.

It car be seen fram Figure (38) that the most flexible analysis
predictions, that is, those for which the totel strains are the largest,
are obtained by the isotropic aralysis. The analysis based upon the
extension to the Hu theory i1s samewhat less flexible, while the Hu
theory results are the stiffest. Also, the differences between the
three anslyses are less in the y direction than in\the x direction.

'I'hese observations are clearly in agreement with “the nature of
the mgterial stress-strain relations upon which the analy%eg are based.

In gll three cases, we are assuming that the y-y curves are identicel,

that 1s, all are represented by RO2M. Referring to Figure (37), In the

case -of the isotropic analysis, we are also assuming, in effect, t\ha;b

the x-x stress-strain curve is identical to the y-y curve ROM. The ™

x-x curve for the extension to the Bu theory is seen to be scmewhat \~.,
stiffer than RO2M, while the x-x curve for the Hu theory is by far the ™.
stiffest of the three. ‘

Camparing the analyses with the test data, all three analyses sub-
stantially underpredict the test points in the high applied load regime,
and more so in the y than in the x direction. It is interesting to note
however, that while the anisotroplc analyses maske these differences even

: greater, they do have the virtue of making the camparlson more consistent
; a8 between the x and y directions. Thus it would sppear that the
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enisotropic nature of the 202L-Th material does influence the strain
distribution in the shear lsg structure, and that the anisotropic analyses
can detect this tendency.

Figures (39) and (40) show the strain distributions along the two
strain gage lines of the test structure. In addition to the isotropic
predicted results, replotted fram Figures (20) end (21), anisotropic
results based upon the extension to the Hu theory are presented. They
indicate that while the differences are not dramatic, they do in fsct
exist.
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SECTION VI

ANTSOTROPIC ELASTIC-PLASTIC-CREEP ANALYSIS

A. Anisotropic Creep Theory

The application of matrix analysis procedures to problems involving
anisotropic creep 1s at present academic. Nelther meaningful analytical
research nor appropriate test data has been found. Therefore the pro-
cedure presented here for anisotropic creep is a simple extension of
that already described in previous sections. Accordingly, only the
difference and additional assumptions are discussed.

Strains due to anigotropic creep can be handled in a way similar to
thogse due to isotropic creep. The step-by-step procedure has only to be
modified for the anisotropic behavior by substituting Equations 19 and
20 for Equations 5 and 7 respectively in the manner described for time .

independent plastic anjsotropy in Section V-D., The additional assumptions

implied by this simple extension are the following:

(1) The anisotropic parsmeters calculated from zero time simple
~ directional tests (by either Hu theory or the proposed extens-
ion) are valid for anisotropic creep.

(2) The effective creep straln equation, Equation 10, remains valid
and the empirical constants (a,B,y) are determined for the
tensile creep test in the assumed effective stress-strain di-
rection. : ’

Because testing of structures exhibiting anisotropié creep has
apparently not been done, the anlisotropic creep procedure cannot be
checked out against tests at this time. However, the results of a

sample calculation are presented for a hypothetical material having
this characteristic, S

B. Ssmple Problem

The 1100-F sluminum shear lag specimen; already analyzed for isotropic

creep, 1s used for an anjisotropic creep analysis msking the following
assumptions: ‘

(1) A1l the uniaxial data (Figure 25) employed in the isotropic
creep anelysis 1s assumed to refer to the y-y (2-2) effective
direction of the anisotropic creep analysis.

(2) The plastic anisotropic parameters (extension of Hu's theory)
for the effective stress-strain curve of the 2024-Th aluminum
alloy material for successive levels of stress, 32 ksi, 37 ksi,
40 ksi, etc., are arbitrarily chosen for the stress levels,

2 xsi, 3 ksi, 4 ksi, etc,,of the 1100-F aluminum effective
stress-strain curve TC1 (Figure 25). Thus: '
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o & @, = 2012 n o,
2000 000222 0.394 1.000 0.697
3000 .000359 +510 1.000 .755
4000 .000540 .590 1.000 «T95
5000 .000815 +660 1,000 .833
6000 .001256 «Th2 1.000 87
TOCO .001967 809 1.000 «905
8000 003038 .835 T 1.000 . .918

10000 007110 .892 1.000 945

This means that the uniaxial x-x (1-1) predicted stress-strain curve and
the shear x-y stress-straln curve are arbitrarily stiffer than the
corresponding isotropic curves.

The node strains obtained, using the anisotropic assumptions for
load P = 2020 1bs at time t = 3 hrs, are presented for the x-axis and
elong x = 1 in. in Figures (41) and (42) respectively.

In genersl, the anisotropic results appear to be stiffer than those
for the isotropic caese, and this is especially true for the vertical gage
line, where the anisotropic shear strains are of the order of 3/4 of the
isotropic values. This should be expected, due to the fact that the
anisotroplc parameters used are all less than, or at the most equal to,
their isotropic equivalents i . .
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SECTION VII

CONCLUSION

The linear, matrix structural analysis methods currently in genereal
use throughout the aerospace industry have recently been extended to in-

clude structures loaded into the inelastic material behavior regime. However,

very 1ittle published information is available correlating predicted
results with the test data. i

The current report recammends a simple analytical approach to such
problems. It is based upon the concept of initisl strains in combination
with a suitable matrix of influence coefficlents, obtained by standard
linear matrix structural analysis methods. The initial strains are those
assocliated with plasticity and creep.

Some particularly useful tests of aluminum and aluminum alloy shear
lag structures have been performed previously for the Air Force. These
structures have been analyzed by the recammended method, and the result-
ing agreement (for both the plasticity and the creep tests) is considered
to be very encouraging. On the other hand, additional testing must be
carried out and correlations with analysis made before the method can
be considered as fully evaluated.

In the meantime, the writers belleve that sufficient confidence in
the method has been established that it may now be used in practical
engineering applications. For example, it should be immediately useful
in such problems as predicting inelastic strdin distributions around
stress raisers in simple structural camponents.

As for the influence of anisotropy, it has been shown that this
material property can be readily accammodated in the recommended procedure.
Calculations made for the 2024-T4 shear lsg structure indicate that, in.
this case at least, anisotropy plays a minor but discernable role in de-
termining the straln distributions. This evidence 1s inconclusive,
~because in this particular test, while the material itself is decidely
enisotropic, the stresses normal to the direction of the applied loads
are quite small.

It is recammended that 1n cases where doubt exists as to the im-
portance of anisotropy, it be included in the analysis. Certainly in
such examples as the shear lag structure, the additional complexity in
the use of the camputer progrsm is very slight.

There 1s one very important restriction implicit in the method pro-
posed in this report. Essentially, this method applies only to a struc-
ture in which the material is initially in the virgin state, and there-
after experiences only contimially-increasing applied loads until failure
occurs., Thls limitation can actually be relaxed to the extent that
elastic unloeding followed by reloading can also ba accommodated, but

31




RO

completely reversed loading is specifically excluded. For the latter
case, e different plasticity theory is needed. It is important that =
technique for handling such problems be developed because of the need
for such applications in fatigue work. Efforts toward removing this re-
striction are currently under way under govermment contract.

Other than the preceding, the largest remaining obstacle to com-
plete inelastic analysis of practical amerospace structures is believed
to be the dearth of apprOpgiate material property data, and constitutive
laws to descrlibe them, :

ek



SECTION VIII

FICURES

33




Bar No. 1

10

2

All Areas = 1iﬁ

.01in.

Fig. 1 Truss Structure

Stress

k e
IS —
Total Strain
Fig. 2 Constant Stress Method
/
K s
B
0
Q
[
2
[42]
k
L o#®) ()
i)

Total Strain

Fig. 3 Constant Strain Metho
3k

~ e
——— -




Stress « ksi

wor !
] !
20} 1
$ ‘.\ '
100 VSingle Element )
fofk———— = — = — < P AP = 5000 b
Multi-Element ] ilr\ AP 500 1b
col Extreme Case AP =50 15° =
?
. : !
hot , Exact Result ! }
toy
!
20} b
i t
3 | i I J
0 50 100 150 200 250
Load - kips

Fig. b4 Results of Constant Stress Method for Bar No. 3 of Truss

150¢-

AP = 5000 1b -

125}

100}

AP = 50 1b and

15 Exact Result

Strgss - ksi

t

1 $ L 1
0 50 100 150 200 - - 250

Load - kips

Fiz. 5 Results of Constant Strain Method for Bar No. 3 of Truss

35




[4
Li
op———————— - e e e e = s s o T e ¢+ e e s e e+ 4 i 1 :

.5"—4:-—.5" TP |
_f_

| ,
4.2* ph="y/v.0

8" tna .08 ».125y2

[~ Sheet

1"
Sn
‘L (t = .08")

*~— Stiffener '
" (Variable Thickness)

Sheet

Stiffener

v

Fig. 6 Shear-lag Specimen Designated SIS1 - From
Air Force Report No. RTD-TDR-63-4032;
5024 -Th Aluminum Alloy (1100-F Specimen Similar)

P * Y P 2 Spaces ? Y ' 2 Spaces
- @ 5" "
i f u ‘5 %w 4}% 8.5
EEOEEENIEEORER -
XX P> S| Sl | el y
)/ X ) \x/ \x// \x/ 4 . .
2NN AN 5" "
X ‘ X\ I DN e S 3 3 )
x| X VNI e SR [spaces Spaces
*_ . @ 1" "
) X ><\ 2R A 81
X >K /;><\ /><\ ‘/><\
sPx] X o< T > T >
XX ] > >< > >< .
2 e lo—a} - X 0"~ - X
Spaces..—[ '_75:] 2 Spaces " '%3 Space:_______—
@.5" 5.5 @ .5" 5" 75 @ 1.25 2 gpaces
px . 5.5.‘ ) '5"
Fig. 7 Stiffness Method Fig. 8 Force Method
Ideslization Idealization
36




7

73

t (Thickness)

Fig. 9 Typical Elements of Force Idealization

\Y
Pl w
~_2~ x
R V] -
s |
a b

Fig. 10 Typical Elements of Stiffness Idealization

37




60

S ROL RO2 |

. | %@0%00

50t &8 /f ‘ j
RO2M k

o Specimens in x-Direction

20l o Specimens in y-Direction

Stress - psi x 103
(W1)
o
l

10}

! 1 !
0o 5 10 15 20

Strain - in/in x 10~3

Fig. 11 2024-T4 Aluminum Alloy Stress-Strain Data and Curve RO2M

o
(@]

3

£ i W
o O

a3
(o]

PrNTUY

.l

n
O .

i
Effective Stress -‘psi x 10

] q I

T

b i 10 15 20

Effective Plus Elastic Strain - in./in. x 1073

Fig. 12 Compéfiédﬁ'of Predicted Effective Stress-Strain Rei&ﬁionship
with RO2M at (0, O) for Various Load Increments

i

38

. RN SR I e ey




IR

e m .

39

(et

y
“ 5.5 in. >
|
9
e
'8 -
W=
5 in.
T
v A il ll“ ! X
1 .2 3 b4 5
Gage Nos, | Co-ordinates | Gage Nos. Co-ordinates
Front| Back ‘;' ii Front | Back i: 131 B
1 1 | o6.0 o0l 6 | 16 |-1.125 |o.0- ]
2 | 12165 t-ool 7. | 17 | 0.8125] 12,5625
3 13 |1.125 | o.0f 8 |18 | 0.8125 2.8125
N w {11504 0.01 9 19 | 0.8125] 4.0625
5 115 |3.000 | 0.0 o
..iFié. 1—‘3 ‘.‘Inéjfr‘ﬁ;nen.ta‘ti‘éﬁ of20—2’4-‘1'1+ Aluminum Alloy Specimen.

e
3




oy, g

Strain - in/in x 10~7

' Strain (in/in x 10°T)

" £
s =g, | Y
Experimental 11\ x
= Data . “e
o X
- Y
p
\ —

=
-
_—

0 T2 3 5

U
.
U

x - in.
Fig. 14 Elastic Strains Along x-Axis for P = 1 1b

=~ }+=0.8125 in.

5 | PiEy &,
4 A - Ey E?‘
Experimental X
© =g, | Data
3
a] =8 R
& A &y
2}k o
b -
‘ _ A
b ]
Ex
-2 i L 1 L
0 2 3 3 5
y- in. '

Fig. 15 Elastic Strains Along x = 0.8125 in, for P = 1 1b
4o




Y
P
. ey
10p A lﬁy Expermental | .1, x
Data usx -
c? |
———-_-‘F_—-___

S¢rain - 1n/ in x 10
N

|3 y 5 5.9
" x - ine ‘

i -Axis = ‘ =51b
1b and AP 5

Fi 16 Strains Along x-Axis for ¥ 11,600

g' K d I

y
| ppCy &
Ex
10¢ 11,
| .- ‘
| o =€ Ex‘perimenta.l “ l
: e | 5.8125 in.’|
..o | ° =£X¥ . -o ‘.‘0- g
- . , ’
&
2 —_—
By
.
e
1)
' a |
; x ~
B
-8 Al
i
: 5
' b
-10 L L —3
(4] -




(o]

Ao P
-ty

€ Experimental £
=Sy . Data Yy

Strain = in[in x 1073

)
\n

-10

. A .
i | 1 1

10

Strain - in/in x 1073
(@]

v
LIB

S e -

e Nl A N :

R 2 3 L 5 55

X -11‘1.

Fig. -18 Strains Along x-Axis for P = 14,600 1b and AP = 5 1b

[P S

Yoo ,
P} EY ny -

N |

s e s vy & s a a6 oo,
et F B B
[S—————

hrem

oo

. RN Y TV RN S

o =*'8,'c

0o = E .
C e XL . —] }=0.8125 in.,
£ ‘ -Exy

“Experimental ... _|_
Data

Al

Fig. 15 Strains Along x = 0.8125 in. for P = 14,600 1b and AP = 5 1b

k2

[



B S N

o

58 et

- s e

I

Strain -~ in/in X 10-3

Strain - in/in x 1073

20 "

A = Ey E
15 Experimental y
' o = Ex Data rL «
B

Elastic - Plastic
——=—— Elastic o ’

el
o
1

\n

-8 ! |- 1

. X « in, :
Fig. 20 Strains Along x-Axis for P = 16,760 1b, and AP = 5 1b

A O T © e e

&2

e

R

s
5

Elastic - Plastic -
= — == Elastic

-10 a4 L

0...--.:,'..,. -‘.12_r IS

L

: ¢ Doamnrea
Fig. 21 Strains Along x = 0.8125 in. for P = 16,760 lb and AP = 5 1b
43

1
0 1 2 3 L 5 5.5




20 -

y a
Pl AP = 51b
€.
Y A=
4= Ey Experimental RO2M
B > X £ Data a
L o=¢C_
15 RO2
/
RO1
T 10 -
(o}
=1
]
g
Lal
~
=
Ll
) 5 -
=
-
@
=~
2
0N
o)
-5 RO1
N
RO2M ——Xy RO2
=10 1 L 1 1
0 5 10 15 16.76 20
P ~1b x 105

Fig. 22 Elastic-Plastic Strains at (0, 0) for Several
Assumed Stress-Strain Curves

b

e e TE K




e(c) ;(k-l), .T(k-l) | ‘

;(k) ,'r(k)

-(k+l)’ T(k+l)

/d

_k
A ele)
_k
Ce(e) L
' A
1
=
o
7
*(k+1)

Fig. 23 The Strain Hardening Rule

ks




(L -329) soaan) pa33Td pPu® I0TABYSE uspusdeq-sWT WNUTUMTY I-COTT 42 ‘BTd

sanoy ‘ami]

sanoy ‘smig

ut q1 g42e

¢ 1 0°1 0‘s ¢y 01 o 0
0 BINLIO] DPO3F]]
A JOTABYDY DPOLIISQ) == = ==
: 2’0 _ . ‘
4t qT OTST 1L . —
- o - I/li“-‘l&\\ ] \MoO ut qt ,MH\

=

o.nﬂ L A 4
3 2-UF AT 000F Vg 2.4 a1 Song
_ T'1
u
i . Ut qT 996¢
4 21 2-
P .

-

g0l X upfuir  ‘ulexyg alysusl T8IOL

m

=

PR

bt e B e b Bt

e e i e i+




Tensile Stress - psi x 103

10

” 1 T
tc1 - Elroom temp) = 10.4 x 10 6 psi
E{temp = 206° C) = 9.01 x 10 & pst ~

© Longitudinal Specimens at
_Time Zero. and Room Temp

O Transverse Specimens at
Time Zero and Room Temp

2 A Test Data at Time Zero and.
Temp 2069 c (See Fig. 2&)
0 1 1 1 1 1 i _,j‘
0 2 4 6 8 10 _3 Tk 6
Tensile Straln - 1n/1n x 10
Flg. 25 1100-F Aluminum Stress-Strain Data at Room
..~ Temperature and at 206* C, for Time t = 0 00
¥
-— 5.5 in. ——————ep
- Gage Nos. Co-ordinates
W L1 |t maex | o | T
et e S I IV PR ORI
- 5 e lé o ~"°.5’ 0.0
‘%.e'a o ]
-3°] 13 1.5 | o.0
5in.
s e o e ‘ l. © 3.0 . 0.0
T 1.0 1.5
8 1.0 3.0
b Lex | "9 1.0 | &5

Pig. 26 Location of Strain Geges on 1100-F Specimen (Ref. 7)

bt




By Ay e e 4t
b .

Strain - in/in x 1073

Strain - in/in x 1073

6 i
v A=Ey Experimenta. rt-
o= EX Data LIE X
x
2 - -y
\ € ¥
0 - h—‘ oy
/O’EXI
=21 -
N 1 1 1 1 ]
0\ 1 2 3 h . . S 5-5
X - in. '
Fig. 27 Straius ,.long x-Axis for P = 1600 1b and t = 0.06 hr
y
b PAEy &
| | é/
a = ¢ ‘
3F Y Experimental & » X
° = €x Data |-
-] = 0 = Exy :
-f }=1.0 in.
= & -E,. a -
1 Yy E!y
-
‘/-* ‘?_2‘
0 a
o
€x
-1} -
-2 1 | i 1

o
[

Fig. 28 Strains

Yy - in,

Along x = 1 in. for P = 1600 1b and t = 0.06 hr




SN

- gtrain - infin x 1073

gtrain - in/in x 1073

o

8 ~1 T T T
6L & 'EY Experimental Py -
o=Ex | Data &y
A Vx —
uex
| 'R
4 1 1 1 i
0 1 2 3 b 5 5.5
I ‘ - 1n.

Fig. 29 Strains Along x-Axis for P = 2020 1b and t = 1.10 hr

o b

Data

Fig. 30 Strains Along x = 1 in. for P = 2020 1b and t = 1.10 hr

y-in‘o

k9




_ @

_.asty Experimental . 3
6 = O m x Data ‘ ' Y _
s 4
‘o ‘ E}ebx
%k - €x ]
£ -
PR e -
3
8
g 0 - e p— ———t
&
.2 -

i i L ]
2 3 b 5 5.5
X - in. '

Fig. 31 Strains Along x~-Axis for P = 2020 1b and ¢ = 3.0 hr

y .
Pl E.Y Em

5 ‘- A' €y } | — é'éﬁr

Experimental oo . %

oo =&
;0 * Data

b o sexy

}
3%-.' Ey‘ By =] $=1.0 in.

,,,,,,

train - in/in x 1073
Y

(o]

.1‘

F— 3 H
W

y-in.
D T T A O A SR SRRV SN

Fig. 32 Strains Along x = 1 in. for P = 2020 1b and ¢t = 3.0 hr

50




S N e e e g

8 4 -
A=z E o Pl
- “¥. | Puperimental e £
6“ Q = Gy Data ) Y ]
7 | &
‘o
~
» Wb
5
<
&2k
'
2 0
£
pe)
@
-2 -
«4d ' -
b i | N i . |
0 2 3 4 5 5.5

x - inc
Fig. 31 Strains Along x-Axis for P = 2020 1b and t = 3.0 hr

y
piéy Exy
o ' f%/
s =Ey =
g = E&x }mperimenta.l : x —
4~ : Data
o = xy :
- 1 ‘
& 'Exy —] 1.0 in.

train - in/in x 107
.

(o]

St

1
4 3

y-in . R

Fig. 32 Strains Along x = 1 in, for P = 2020 1b and t = 3.0 hr

50




OPON 293U3) W UTRJIG SA 880J3G 9ATIONIIT € ‘Brd

, . N ._
nnOA x 5\5..?995 pue o13seTd *oyasele .onh +,A3 : +|.m:v UTexq8 Tei0%

e
#

N

i

!

&

s°8 8 1 9 S 4 T
T |  EEm— T Y Y Y : Y
5.0t . 0f - TO°T . _"
.01 0T - Hoo.dv 0202 {
- ille S 100°t - 0°1
2-0T o't - 10°0
¢-01 100 - So.ov 009t
- =0T 100°0 - 0°0 :
Iy v Iy *qT . -
v - ewyy pesdery peor petrddy . . *q 0T
- QTS = gy e .Emno.mnac -
n_ *3q_o
- .hﬂ«nOﬁl#Q ﬁmﬂ -
, e _0T
LY ‘X9 00°T=%
‘ qT009T=d
e B .
L & xq 0°0=3
/ A..B 00" €=2 | _..E 00°T=3 4t003t=d
a1 0202=d ‘Y OT=aV ﬁomom_.m.
1 1 1 1 1 1 i

Eot x §8d -~ 888338 9AT30933H

e




.

[ O BT K e, N TS KGR S LA AR TN A e e
‘&T_‘i""“*‘ Pt S RN 5 TR TN <

Strains - in./in. x 1073

10 ,
J ’ ' :
9 AP
8l €y : a= y | Experimental

Time - hr

Fig. 34 Total (Elastic, Plastic and Creep) Strains
at Center of Specimen (Gage 1) for P=1600 1b
to Time 1 hr, then P=2020 1b to Time 3 hr

52




-

L e A s b

e s e e A e 7 LR P

Strains - in./in. x 2077

Fig. 35 Total (Elastic, Plastic and Creep) Strains st
_ (1.0 in., 3.0 in.) (Gage 8) for P = 1600 1b
%o time 1 hr, thenP=20201btotim¢3hr
53

¥

wey YT ™



G P M S e e L

8 T IIO0 o SR e

b et e ot R TU

Uniexiel Stress

°’§1(‘°111)2 = "ga("ge)a

Y

Uniaxial Stress - Plastic
Strain Showing Plastic
Work wl =f cde

.:HT—.-———_——_—_—--———-—_

Pla.sfic Work - w

Figure 36 Typical Uniaxial Stress vs Plastic Work, w, Plot.

54




|

100

x-x Curve Basged
on Hu's Theory

-3
(o]
L

last
E 8 ic’Cuxf.re x-x Curve Based on

™
o
A
®
o
8 6ot Extension to Hu's Theory
\. .
R a
Lol
v S0
n
H
h s
b ko -y Curve ROZ2M
[
3
= 30~
=3
()
&
20 -
QLongitudinal (x-Direction)
10 b BTransverse (y-Direction)
o | I \ 1 1 1 1
0 2 L 6 8 10 12 14

Tensile Strain - in./in. x 1073

R 2t

Fig. 37 Assumed Effective Stress (y-y) Curve,
Calculated x-x Curves ani Test Data

55

ks e Y

RS o




16
1
12

.10

Node Strains € - in./in. x 1073

-2

-4

B === Isotropic Analysis Based 4 ’
on y-y Stress-Strain Curve (R02M) y/
== Anisotropic Analysis
! .
A= Gy Experimental R
-~ ©=C,| Data Based on Extension
y to Hu's Theory
P
P

o} 2 4 6 8 10 12 14 16
‘ Applied Load P - kips ‘

Fig. 38 Node Strains at (0, 0) - Isotropic and Anisotropic Analysis

56

b o
- ' ‘ Hu's Theory -
Based on Extension _

to Hu's Theory \

1 1 ] 1 N | | Nl 1
18




4= .Ey ‘Experimental Ey
o=¢t Data '
x 4
a N =) x
. ——m— Anisotropic, Extension to Ex
Hu's Theory ' -

— = — Igotropic

-8 L 1 : ol 1 1

0 1 2 3 4 5 5.5

x - in.

Fig. 39 Strains Along X - Axis for P = 16,760 1b.
‘ Isotropic and Anisotropic Analyses

10

[1a]
‘o
1
x 9
g
ord
=~
3
"0
g
o
]
[ 2]
e
m " ' -
-5F ———— Anisotropic, Extension to xt o 7
: . H\;'a Theory '
- ! ' o = == Isotropic
_loo ;. L 1 - l: .
2
‘ v - in. 3 5

Fig. 4O Strains Along x = 0,8125 in. for P = 16,760 1b,
* Isotropic and Anisotropic Analyses _

g TR e B e e

| 5T




. ‘ y
8 - P} -
N, o= Ey Experimental €
0= Ex Data Y
6 . rL -
Anisotropic, Extension . ) e
\ to Hu's Theory X R
L — = — Isotroplc ‘
€y 1
2 s P oy

Strain - infin x 1073

-“%;" ] i 1 L N
o 1 2 3 4 5 5.5
: X - in.

Fig. 41 Strains Along x - Axis for P = 2020 1b and t = 3.0 hr.
Isotropic eand Anisotropic Analyses

e
A= Ey ‘ : PACY Exy
5 o= Ex Exierimenfial % ‘/1
_ ata . : (20 B
.'q a-= Exy ] X o X
, 4l ————— Anisotropic, Extension i
to Hu's Theory |
—— — — Igotropic L
3P = - . .
| —* \
i \

Strain - in./in. x 1073

25 1 2 3 " 5
y - in.

Fig. 42 Strains Along x = 1 in. for P = 2020 1b and t = 3.0 hr.
Isotropic and Anisotropic Analyses ‘ ‘

58




e L L

A L et

Btress - psi

y
; = ' ' ) cy .
"%y | Calculated Fram : .
o = Experimental Data J-L x
o : o O
x 0.
X
i .
P-11b
o, (Force Method)
N
Ty (stiffness Meﬁhoa)
o (Force Method)
{
° 2 3 4 V5 9.5
x - in. N
Fig. b3 Elastic Stress Distribution Along x-Axis .
59
i
’




Stress - psi

4y
61 I 7]
\ °qu
® 9y T Galeulated From %x
o= O . Experimental Data | >
a=¢ i
b pr ' -
= }=0.8125 in.
P=11b
Yy
2 —
Force Method \
o /
\ . Stiffness Method/
X ' .
2 Note: Force and Stiffness Method 7
Results identicsal except
as noted.
-4 1 [} | i
) 1 2 3 L 5
= y - ino

Fig.

Ll Elestic Stress Distribution Along x = 0.8125 in,

e e,



5 g s L

AFPENDIX I
ELASTIC ANALYSIS OF SHEAR LAG STRUCTURE

A. Tdealization of Shear Lag Stxucture

As stated in the introduction, when a problem is formulated by
means of a standard influence coefficlent approach, the necessary linear
analysis may be carried out using elther the force or dlsplacement
method. Since published correlations between results of the matrix force
and direct stiffness methods of linear elastic analyses for redundant
structures have, in the past, left room for douht as to the equivalence
of results, this Appendix presents a coamparison of the stresses fram two
idealizations of the simple shear-lag stiffened-plate structure, Figures
(7) and (8). In the past, discrepancies have been due in part to a
marked difference in the arrangement of node points for corresponding
1dealizations, and also to the fact that techniques for obtaining node
stresses in finite element analyses are still being improved. An attempt
was made to keep the ideslizations as camparable as possible with respect
to location of nodes and the determinagtion of stresses.

B. Force Method

The ideelization for the force method may be seen in Figure (8).
It comprises conventional bars and shear panels located in the
manner shown. The analyses of same previous idealizations of this t*pe
have amitted the Poisson's ratic effect. This effect can be incorporated
in the masnner described in Appendix II.

C. Stiffness Method

The ideslization for the stiffness method consists of "Turner
triangles,” which are located as shown in Figure (7). The basic theory
of the trisngle is to be found in References 8 and 9.

While the conventional procedure was used to obtaln node stresses
for the force method, comparable stiffness-method stresses can be cal-
culated in seversl ways. A recent paper, Reference 9, suggests two mesns
of obtaining node stress, one of which was exrployed in the analysis.

This method will be reviewed briefly.

Figure (10) represents a cluster of triangles. It is required to
£ind the stresses at the node common to triangles P to W. The node
forces for each triangle at this apex are obtained as described in
Turner's former pepers. Swmning the forces on a vertical section through
1 in both directions gilves

XP+xqfo+xs

X, 0= YP"YQ*YR*IS

éa




Analogous results X, end Y, ere obtained for the corresponding horizontal
cut.

The node stresses at the node are

X
o} = T ¥
b4 5 (F:tp + d'ts)
c. = Yh
y 2 (st + vt | ‘
1 xh Yv
% T 1T (et + bty 1
xy > \8 ” + tu Fl (ct,p + dts)

where a8, b, ¢, and & are as indicated and t is the thickness.

D. Ccmparison of Elastlc Results and Perspective

. The results are correlated by means of the curves appearing in
Figures (43) and (44) with calculated values froam the experimental data
of Re erence T.

. The correlation between the stresses derived from the force method
and fram the stiffness method of analysis is excellent and msy be re-
garded as exact for engineering aspplications. The largest discrepancy
is in the direct stresses in the x direction at the middle of the plate
as shown in Figure (h3) Even in this region the difference is quite
small. It is believed that an even closer agreement could be obtalned

by modifying the idealized structure to provide square shear panels
adjacent to the reinforcement and a finer grid at the plate center.

The largest discrepancy between anslysis and test results is
located in the region of the plate center. Reference 7 indicated that
considersble bending was exhiblted by the structure as the ends of the
stiffener were loaded. The extent to which this affects the gage
reedings was not determined; however, it msy be anticipated that the
effect be greatest near the middle of the plate The curves on Figure
(43) reinforce this impression.

On the basls of the excellent agreement noted here, it can be con-
cluded that the incorporation of plastic and creep effects into the
present method of structural analysis will not be restricted in any
way by the particular linear snalysils method employed.




APPENDIX II
POISSON'S RATIO EFFECT

The strain energy relationship for an elastic plate in terms of in
plane stresses 1s glven by the volmne integral:

1 2 2 2
U=2Ef[on+aw-avcncw+2(l+v)ow]dv

The idealized structure corresponding to a rectangular plate for
a finite element matrix force analysls has orthogonal bars teking only
normal stresses and panels in pure shear. Figure (8), the shear-lag
specimen, represents a typlcal 1dealization of this type. Defining

0:6( and OY.V as the axial stress in the bars and on as the shear stress

in the psnels, the strain energy U of the idealized structure is
sanetimes taken as:

——-f[n g +2(1<1~ v)cz]dv

Camparing the plate strain energy U with the idealized structure

straln energy U' it is obvious that the. finite element expression ne-

glects to account for the interaction texrm of the plate (- 2v O:cccyy)

which is due to Poisson's ratio. This uncoupling of the normal stresses’
has the effect of muking the idealized plate less rigid than the actual
plate. The finite element ideallzation is refined by including the term

(-2vs 5.0 yy) in U’ making the model more consistent with the elastic
plate.

The sketch, Figure (9), shows a shear panel with adjacent axisal
load carrying bars. Assume the structure represents a portion of a
plate structure £ inches ioag, b inches wide and ¢ inches thick. The
normal stresses at one cormner of the idealized structure are designated

o9 and 9, in the x and y directions respectively. It 1s sufficiently

accura.te in sccounting for the interaction term to assume that the normal
stresges are constant over the plate corresponding to the shaded quadrant

! and also to assume that these stresses are equal to g, and Oy) the values

: 1

¢ at the corner. The straln energy term to be included is represented by
% 29,

1

5 ' 63
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This term together with the reciprocal term

where o., represents the interaction flexlbility influence coefflcient.

12 ,
Carrying out the integration over the quadrant of the plate, the in~
fluence coefficient 1is evaluated.

. _ l _ _\_)blt
012_-E\1/;iv TTETT

a,, and similar terms for

other blaxlally stressed areas, when included in the flexibility matrix,

account for the Poisson's ratio effect.
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APPENDIX III

_ INSTABILITY ANALYSIS OF THE CONSTANT STRESS AND CONSTANT STRAIN METHODS

The stability of the two methods i3 easily tested by determining
vhether perturbations introduced into the analysis grow or decay with
succeeding stepa. It is instructive, however, to take the following

. approach. 1In place of the computed quantities, intrcduce exact guanti-

ties, signified by a caret and associlated error terms, in the manner
W
The exact reiation is taken to be ',
&aik )} - [r 1m]S(Px(nk)E * [ria]{egk% N | I1-2
Equation 3 ca.n’be written in terms of member loads
{qs.k)} = [I~ im]{";k)} * '[ris] {egk—l)} - I3
Substituting Equation III-1 into Equation ITI-3 gives

)+ 3} » )

from which Equation IIT-2 mey be subtracted to yield the following
expresgion for the errors

(x) (k-1) _ afk) I11-4

{gi = 1"13 ‘d - ?J .

The constant stress and cons1(:ant)strain methods are now distinguished
k-1

by the manner in which the ¢ 3 are specified. The Ramberg-Osgood
stresgs-strain relation, which we may write in the form

(x) (x) yn (x)
(x) | & %1 | Y %
€ E,A, ¥ ;';—E_i' o "l_(ﬂ'l

will be used in examining both methods.
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The® nonlinear strains, in the constant stress method, are given by

(k-1) (x-1)
RS VA INC
TEy IR 1 e
which, on using Equation III-1, may be written in the expanded fonn
A(k-1) | {(k-1) k-1)jn-1 (k-1
(k 1y 3% . S
" &k 7| |°°JT o e
(k)

A similar expénsion can be constructed for the ¢ " on introducing
a(k)} §(k-l)\ { x)
{qd E R ‘ﬁ.(j

which gives

(k)

3
- e

Substituting the fbregoing expression into Equation III-4, and assuming
small errors in the sense that §1<<ql and small steps in the loading such

that Aqi<<qi, so that terms containing the products of these quantities
may be dropped, we obtain '

(k"l) a(k-l)

063 Aj

n-1 ,a(k)

CA AJ + n

. + mee-
obj Aj

alk-1) |a(x-1)

ki S

which may be re-written

(@ Bl o [ S {40}
; J

where EJ glve the slope of the stress versus inelastic-strain curve at
the individuel element stress levels.

n-1

{ggk-l) ) Aa.gk)}




Instability develops when the errors in the kth step incresse over
those in the k-ISt step. Clearly, the method would be expected to bde
unstable, if any of the inequalities g(k) (k 1) were satisfied

directly. A more critical check, however, 1s the consider the entire
set of {§i} as a vector (in n-dimensional space where n is equal to the

number of elements) and apply the condition that the Eucliudean length
of this vector does not increase. Mathematically, this means that for

stability
(407" {499 < fe)" {a)

where the critical condition is defined by using the equality sign.

For simplicity, we consilder the case of infinitesimally small steps
in the loading, so that the Aqi terms may be neglected, and further, de-

note
,[I_U]F/Egk-l) A_J [B(k-l)]

The critical condition for instebility then becames

e T BT
{;(k'l)} % (k-l)}

It is now observed that the elgenvalues of

(k- ] [ B(1:--1)

will all be positive, hence the condition that none of these eigenvalues
be greater than one (which becames the stability requirement), can be
replaced by the more severe condition that the sum of the eigenvalues
not be greater than one. This latter condition can be assured by re-
quiring that the sum of the squares of all elements of B:'.‘1 not be

greater than one, and in addition, that the gbaolute sum of any row or

6T




column in Bij not be greater than one. The eriticel stress 1s then

found from the largest of these sums.
In the case of the example truss problem, where Ei =F = lO7 psi,
n = 10, A = 1.0 sq. in., end 0, = o, = lO5 psl, the sum of the squares

oi
approach viz.,

n-1,2 3

c
nj| cr 2 -
3n (.a.o._\ X g ru 1

iJ=1

yields Oop = 83,800 psi., while the rows and columns approach gives

Opp = 82,900 psi.

Recall that the foregoing development has determined the minimum
- value at which instebillty might occur. It is of interest to campute
a8 critical value of stress st which instsbillty is strongly assured to
occur. This can be done by returning to the initial notion that in-

stability will occur if §(k) > g(k'l). This smounts to restricting
attention to the diagonal elements in the Bij matrix The corresponding

eritical stress (lowest value) will be given by the Targest (in sbsolute
value) element on the diagonsl in the Bij matrix. This corresponds to

the - 0.41h x 107 term in the ry 13 matrix, so that the critical stress

is given by
e n-1
-;’%(-5:‘:5) X(0.41% x 107) =1

which gives Oop = 93,800 psi. The lowest stress at which instebility

would develop, in the case of the example truss problem, would therefore
be expected to occur between 82,900 psi and 93,800 psi.

Note that if only one struéturel element were linelastic, then the
diagonal term in the rij matrix corresponding to this element would

give the correct critical stress by the latter procedure. Both of the
foregoing values of critical stress have been indicated in Figure &,
where they are seen to correlate with the experimental (computer) re-
sults. The simple approach of considering only the diagonal elements




P

appears to be sdvantageous in the present problem. With this approsch,
it 18 easy to see that finite values of Aq‘i’ wvhich meke the elements in

the second diasgonal matiix in Equation III-5 less than one, must raise
the stress for instability, which explains the progression of critical
stresses (with increasing loed step size) appearing in Figure 4.

Finally, it 1s noted that certain of the foregoing results, viz.,
the value of O based on one disgonal elements slone , can be obtained
simply by introducing qgk) (k) glace of q_i directly into
Equation III-3, and regarding the '1 as perturbations on the qgk).

- The additional results, such as the demonstration of the effects of

Tinite Aqi, however, are not obtained by this procedure.

In the case of the constant strain method, in addition to the
error quantities in the memver 1oads

(- {é“’}
we also introduce error quantities for the relaxed loads
}-fe]- {é‘:’} .

The equation defining the relaxed loads, wrﬁ:ten for the gemeric 1
member, 1s

(k) n-1l
D e, |
11 31 1 By %01”1

which may be wri‘bten in the following form

A L @] O 5 oD, “»fl)l L)

| Y % 1
| Eijl:_i |q_1(“)|+ & %o1hy |q1‘i“l)|‘

TR

a.* 1), alk1) | L (x)
P - + a5« D o

Sy
|

oi:l.

£z

69

L R




If we now spply the condition of no load reversals, then the terms
(k)/ | (k)letc ., will all produce the same sign (for a given element)

and hence may be cancelled out. Applying the condition that all error
terms ;i end loed increments Aqi are much smaller than the load magnitude

|qil leads to the result

E
- ) - ey (- ;f:;ﬁ )

*{
where ; a_&k l)
’-‘-(k 1) & __1_._
Y E = TE 19,48

The corresponding form of Equation III-4 may now be written by
_ introducing the exact load-reduction-increments L\qr 3 where

_ . Aﬁ‘ﬁk) a(k) . '@.._93)‘ .

which leads to v
30 alk-1) | (x-1)|" (k-1)

(k)] _ L U
{gi } [rid]v j + %04y d |q*£ 1)
30y |45 4 ), " 40)
7 EJ . %3 AJ "é")‘l

Applying, once again, the smallness requirement on the §i and Aq_i, yields

[“ \-37(5(1: 2, _H_- x-l) k_l(k) -7

T0



| (x) |
E by k-
[l - )

vhere the sbsolute value signs have been amitted for simplicity.

~ The check for the occurrence of instability may now be carried ocut
in the same manner as for the constant stress method. Thus, considering
only the case of infinitesimal load increments, the corresponding form
of the B, 3 matrix, as defined by Equation III-6, is found to be

A mumerical check for the specisl case of the truss problem shows that
the eritical condition of the eigenvalues suming to unity calls for
physically inadmissible values of E(cr)‘ A simpler demonstration of

this pro?ertg is provided by the "direct approach” (i.e., setting _
ggk) g \61)). 1In tnis case, the critical stress is given by the (.

lowest value corresponding to the "n" equations obtained by equating
the diegonal elements of ‘

F+f%;;\-l[E:a]F/(i(°’“ Aﬂ+[;1/§(cr)ij]_|; 1_] |

In the example truss problem, where E, = E, Ogy = g and A, = 1.0,
and jrhere the three disgonal elements in the l‘j 3 matrix can be denoted
by =;E, where in turn 0<(, <, the foregoing matrix equation reduces to
~ the following simple algebraic equation :

-CE+ E
Cl .tl -

Eler)s * & o 7

The indicated critical values are easily seen to be - (,E end - (2 - ci)B,

both of which are physically inadmlssible for the Ramberg-0sgood stress-
strain relation. Thus, the constant strain method is indicated tobe -
free of instebility in this case. The problem of accuracy, of course,
18 another matter, due to the necessity of working with finite (and pre-
fersbly large) loed steps. These, apparently, are responsible for the
slow divergence of the camputer results shown in Figure 5.

T
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APPENDIX IV
ROTATION OF AXES OF ANISOTROPY

Let the x and y axes be rbtated fram the axes of anisotropy in a
positive sense so that from the strain transformation equations we get:

. .
de, ,l de,, +m de22 + zlmdcle

dcy = madcn +1 d¢22 - 2[mdc12

de -l:hdcn +,(mdc22 + 2(12 . 2)d;12

Xy

vhen {, and m are the usual direction. ¢osines of the x-axis with respect

to the orthogonal axes.

Similarly from the stress transformatlon equations:

\

2 2 :f
= f ox+may-;ﬁoﬂ
2, 4 f2. + otn v
Opp = WO, +1a 9y P . -2
= [mo -[mc + (12 -m )a;q‘

Substituting Equation IV-2 into the appropriate expressions in Equation
12 gilves a set of gquations es follows: -

dep = %3[(12&11 - n%ay5)e, + _(“2"1.11' £ “lé)";
- Elm(au + a]z)aﬂ]
de,, = %3[(512022 -f “ﬁ).°x + uéaéé. y m?°12)°3' > -3
+ alm(aaa + ?12)":,]

tas - § O ale, sq) e (]




. o e

03T W T eustiameat L L L .

Finally substituting Equation IV-3 into Equation IV-1, simplifying and

defining three new coefficients 8, 8, and 8, such that § = o}, - ‘Zaw
= (°’11 + ¢8) end 6, = (0122 + 8) the appropriate incremental flow

equations became:
’

de, = da[(lhb + mhb - 6)0 - (a12 fm 8 -[ nos )o

- a{m([?al - m262)ow]

de, = %:‘.[ul*bz + ml*al - G)Oy - (o, - 62 -l 61)0 r:w_h
- alm(meal - 126,2)012»'] .‘ _ ;
de,, = -‘51,-';[(3% + Wfa%s, + Wil )o |

Xy

- ata(fPst- iPy)o, - ateta®yy - L]

Insertion of Equation IV-2 into 11 gives the expression for effec-
tive stress: .

& - [(ll‘b1 + ml‘az - s)c:‘; - 2oy, - [ °1 fm sp)a,0,

v-5

"

+ '(lu&a + mh6l - 6)03, + (30)44 + ’l»lenabl + kfmeba)oi,

| - um(fbl - m252)0’x6xy - hh(maﬁ - fag‘)cyoxy] J

Now suppose we meke an uniaxial stress-strain test for the
x-direction. The valid expressions became:

o
"

a3, gh v,
='s, +u'ty - 8)o,

5 (lhal + ‘mhba - a)ai

From the three Equations IV-4, we obtain equations similar to Equation
15. This equation is augnented under restrictions of equal plastic
work thus: .

o/ v/ o/ cifffn P -6
LY 22 33 4 vy ,
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Assigning the value of unity to one "o" as before we obtain the relative
val;:es of the others. In particular we now obtain a value for (lhél
+ms, - 8) which is a function of @15 Gpos U3
unknown. Therefore @), may be determined.

all known an_d o),




APPENDIX V
INELASTIC MATRIX COMPUTER PROGRAM

A, Program‘Description

This 1is a brief description of the Grummen inelestic matrix pro-
gram for carrying out elastic-plastic-creep anslysis - deck No. 45128 -
Elastic Unloading (follows Hooke's Law when unloading), including
anisotropy.

This program for elastlic-plastic enalysis has proved to be quite
adaptable for analytic investigations. It has been modified to include
an option for anisotroplc analysis. Previously, the prograsm was modi-
fied to use time-hardening theory, deformation theory, inelastic un-
loading, and constant stress theory (none of which have been retained
in the final program). It was not necessary to do major program re-
visions to accommodate these variastions. The program housekeeping is

‘arranged so that modifications to the manipulation of data will not

affect the housekeeping. Thus the progrsm mskes a convenient freme-
work to explore varilous calculation procedures.

The program 1s written in Fortran ITI to run on the Grumman IBM
TO94s. These are 2 channel (A and B) machines with 6 drives per
channel; 32,768 words of core storage; on-line card reader; on-line
printer; and printer clock. The program is set to run under Fortran
Monitor control which uses a $JOB card for identification. Input is
on logical tape 7 (A-2), print output on logical tape 6 (A-2) and
punched output on logical tape 5 (B-4) (not used by this program).
Logical tape 8 (B-1) is used for storage of binary output which is
converted to BCD print output in 1link 6 (at the end of job). The pro-
gram will eccept an input data tape on logical tape 9 (A-5) and will

. write a binary save tape for restart on logical tape 11 (A-6). These

2 auxiliary tapes are optional for each run (see description of the
control cards). The Grumman IOU subroutine, as well as the subroutines
for rewinding and unlosding a tape (RUN) and for moving to the start
of a designated file (FILTAP) are included, as required in the program,
in column binary form.

The program tape furnished to Wright Patterson Air Force Base
contains all the informetion needed to duplicate our analysis. It is

in the following sequence:

File 1 - a l-card BCD label tested by the program 'to distinguish
BCD data tape fram binary save tape.

File 2 ~ BCD card images for matrices SIM AND SIJ. See pages T9

and 80 for a description of the matrices and their
format.
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File 3 - BCD card images of Fortran program (6 links), each link.
inclvding binary subroutines previously mentioned.

Multiple ( 6 ) end of file marks.

We recommend that all 3 files of this tape be copled for use, then
that file 3 be punched onto Fortran cards. The punchlng program must
. be able to handle mixed-mode cards to accommodate the short binary sub-
routines. This deck of cards, with the proper *I1.D. or $JOB card, will.
then be in proper form for a Fortran camplle and execute, using the
copied tape on drive A-5 (logicel 9). The program uses only the data
fram files 1 and 2; it will not move into file 3. This 2-file format
for the data tape 1s generated by the GISMO matrix system in use at
Gruman and elsevhere. .

Ea.ch link of the progrem contains the non-IBM subroutines needed
for operation., Standard input-output subroutines etc. will be taken
fram the library tape. As a point of information, the progrsm contains
six links mmbered consecutively fram 1 to 6.

1) Link 1 reads the first control card, and resds all other
decimgl input supplied.

2) Link 2 1s used only on a restart Job. It reads the modified
step table, if provided, and part of the binary input tape.

3) Link 3 1s used only on a restart job, and reads the balance’
of the binary input tape.

L) Link 4 1s the processing link., It does all the calculationm,
print control, and writing of binary output on tape B-1 to be
converted to BCD print output by Link 6. ‘

5) Link 5 writec a binery tape for restert, then transfers to
: Link g If no binary tape is to be written, exit 1s from
Link 6.

6) Link 6 resds the binary output stored on tape B-1 and converts

- 1t to BCD output on tspe A-3 for printing. When tape B-l has
been campletely processed, a message to the operator indicates
that 1t need not be saved. If, due to machine error or
operator Interventlon, tape B-1 is not processed into prints
on A-3, but is saved, then Link 6 can be used as s separate
program using B-1 as a data tape and will process B-1 into ‘
prints on A-3. Link 6 does not use any data fram COMMON. All
necessary clues are stored on B-l,

Sequencing and detaile of the data cards follow. The symbols used

in the progrem for various items of input data are listed on pege 77
and are shown on the sample key-punching sheet pege TZ. <
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The data cards are used in the following seqﬁence s lmmediately
after the *DATA card required by the Monitor:

1. General clue card (FORMAT 1) containing KLU4, NINCLD, NA, KLUT,
KLUISO, ALPHA, BETA, GAMMA, GNU, and a title or caption.

2. Table of load or time steps deslred. Up to ten cards defining
ten steps may be used. Load steps and time steps may be used
in any sequence. The maximum level for each load or time step
may be gbove or below the previous maeximum level of loed or
time. The program verifies ‘the algebralc sign of the increment,
and corrects 1t 1f necessary. Each card contains four variables
TEMP1, TEMP2, TEMP3, TEMPL in FORMAT 2.

3. Data matrices. These may be provided in any sequence., Each
matrix has a header card in FORMAT 3, one or more data cards
in FORMAT 4, and a blank card to end it. The last input
matrix on the Monitor input tape must be followed by one
added blank card (two total) to trip the program into operation.

In the event that a job is running overtime, and it 1s desired to
stop the program in a restartsble form, mount a blank tape on logical
tape 11 (drive A-6) and set Sense Switeh 6 on. This,will write the
contents of memory on A-6 in proper fo—i to continue' the run later.
The program distingulishes between the sawved binary tape and a decimal
input tape at starting time. Either is mounted on logical tape 9
(Drive A-5). ‘

Built-in pauses in the program are as follows: v '

. o g

1. Pause 11111 to mount the data input tape at the start of the
progrem, if all matrices are not on the Monitor input tape
A-2. For this KLU, in the first data card, should be a "1" to
"4" indicating the count of decimsl matrices on A-5. If A-5
is a binary saved tape from a preceding run, any digit (except
zero )acceptable for KLUb. .

2. Peuse 1 t0 mount a blank tape on A-6 to receive memory. This
18 reached either with Sense Switch 6, or with a cerd in the
table of steps punched TAPE in columms T-10. ‘

B: Symbols and Format of the Data Cards

l. General Clue Card - FORMAT 1
Cols. Fleld Symbol

1 n KLUh This gives the mumber of input matrices
: on the euxiliary input tape (A-5). If
gll matrices are on the monitor tape,
leave this dlank. If using binary re-
start tape, use a digit. Maximum number
of decimal input matricea or the amxiliary
input tape 1s k4.

™




Cols.
2-4

21-30
31-35

36-40
k150
51-80

2, Table
Cols.
1-6
T-10

Field Symbol

I3  NINCLD This gives the number of non-increment re-
cycles at each load or time level. The
total cycles at each level is NINCLD + 1.
When printing, the first, tenth, twentieth,
etc., and last cycle of each printeble level
will be printed. v

I3 NA This sets the frame size for the problem
t0 be handled. NA is three times the
nuber of nodes. Maximm value is 165
(55 nodes).

1 KLUt 0, or blank, prints 5 preselected matrices
on cycles indicated by the step table;
1 prints all matrices on cycles indicated
by the step table. 2 prints 5 preselected
matrices on all cycles; 3-9 print all
matrices on all cycles.

1 KLUISO 0 indicates an isotropic run
1 indicates an anisotroplc run

X Not used

E10.3 ALFEA A varisble defined by the creep-strain
‘ equation.

E10.3 BETA " A varisble defined by the creep-strain
. equation.

5.2 GAMMA A vearigble defined by the creep-strain
i equation.

¥5.2 GNU Poigson's ratio "mu"
10X v Not used
SA6 TA-TE Any 30 characters of alpha-numeric text
‘ to be printed as a heeding for identifica-
< tion purposes. ,

of Steps (1limited to ten entries) - FORMAT 2

Pleld
6X Not used
AL LOAD indicates a load step, TIME indicates a

time step, TAPE indlicates write memory on a
save-tape on drive A-6 (1ogical #11) then exit.
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..CO].BQ .

21-30

h14_80

3. Data Matrices - Header Card - FORMAT 3

Cols.
1-6.

7-10

12-17

Fleld

E10.6

£10.1

" Elo.1

Fleld

6&X
Lx

A6

' FINS or blank indicates end of teble (this may

be the 11th card in the table).
Upper limit of step in pounds or hours

Interval or increment for calculation

- Interval or increment for print cutput. Prints

are generated on tape A-3 for the current cycle
when the current load or time level 1s an inte-
gral multiple of the print interval. If the
print interval 1is left blank, no prints are
generated for cycles in this step. If print
interval 1s very small compared to the current
level, then numeric problems sametimes oceur
in the print control subroutine (OUTPUT), and
it may be necessary to re-run with the every-
cycle print control "2" or "3" for KLUT punched
in the first control card.

Ignored

Not used

Not used. We use the letters MIRX for com-
patibility with the GISMO Matrix System, whizh
reads snd writes matrices in this format.

‘Not' used

This is the identification nasme for the input
matrices and must correspond exactly with one
of.the following names:

bbbSIM Matrix of stresses for applied loads
. maximm size 165x1

bbLSLT Matrix of stresses for member strains
maximm size 165x165

PTLIGN Table of stress values 11x1
HYEPSN Table of straln values 1

Thege two matrices define the stress-
strain curve as a series of chords.
The data is entered in this format

9
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merely to conform to the format of the
SIM-S1IJ matrices which were generated
using the GISMO Matrix System. Note
that the first value in both TSIGN en
TEPSN must be zero to avold upsetting
the interpolation procedure.

TALF 12 5
TALF 23 %23 Baslc anisotroplc paremeters
TALF 31 a31 lx

18 1x Not used

19-21 I3 Number of rows in this matrix

22-24 13 Number of columns in this matrix

25-32 8x Not used |

33 n The digit 3

34-80 ' Kot used

4, Data Matrices - Data Cards - FORMAT L
Cols. . Fleld
1 1X RNot used

2-4 I3 Row index for the first element
5-T I3 E Column index for the first element
8-23 E6.8 The first element on this card.

2L X Not used
25-27 I3 Row index for the second elgment
28-30 13 Colum index for the second element
31-46 E16.8 The second element on this card |
L 1xX Not used
48-50 13 Row index for the third element
51-53 13 Column index for the thind element

&
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4
Cols. Field
s4-69. %, E16.8 The third element on this card

h
.

T0-80 - - - Not used

_ The last card of a matrix must be campletely blank (tested in Col.
2-4).  The last matrix on the Monitor input tape 7 (drive A-2) must be
followed by one added blank card (two total) to trip the program into

operatinn.

The input mntrices on the Monitor tape msy be in any sequence as
long as each matrix starts with a header card, has all its data cards

next, and ends with a blank card.

C. Anisotropic Parsmeter Matrices

If a run is indicated as isotropic in the first control card
(KLUISO in Col. 9 is zero or blank) the program will resd in the
anisotropic parsmeters, if provided; then it will replace them with the
built-in parameters for the isotropic condition. If a run is indicated
as anisotropic in the first control card (KLUISO is 1 to 9), then ome
each of the anlsotropic parsmeter matrices must be provided or the pro-
gram will terminste on an error.

D. Regtart Procedure

If the run being set up is a restart, the Input deck cen be in
several forms. The first control card must have a digit in KLUL so
that the program will read tape A-5; NINCLD and KLUT are read from this
card. The other factors are curried fram the previous run. The con-
tinuation of an isotrdple run will always be isotropic, and conversely,
regardless of the clue provided (KLUISO).

The table of steps may be read in again (modified) if the previous
run is stopped with sense switch 6, or it may be retained and continued
fran the previous run. However, if the previous run is stored on tape
# A-6 by using a TAPE card in the step teble, then a new step tasble must
be reed in. .

In either case, the last data card on a restart job must be FINS
or blank in columns 7-10. This means a restdrt dats deck will have a
minimm of two cards (clue card end a blank), or a maximm of 12 cards
(clue card, 10 step cards and a FINS or blank). :

E. Time Estimsates

For time eatimates, allow 3.5 minutes to campile the Fortran,
1.5 minutes to read the input tape, 2.0 seconds per cycle printed, and
100 to 110 cycles of calculation per mimute. REach printed cycle writes

approximately 3 feet of print tape (55 node problems).
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‘ Enter Link-l:)

This a Con-
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Read Step
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Exit
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Enter Link 3

Read The
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Saved Binary.
Matrices From
Tape 9
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Input Tape 9
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Print Operator
Message Relative
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Saved Binary Tape

Write Out
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Shear Modulus
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Stress-Strain
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Enter Link 9

Rewind
Tape 11
Drive A-6

wWrite
Coded BCD
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A-6

Write End-
of-file on
A-6

rite Various
Control Clues
and Single-

Valued Variables
on A~

Write Matrices
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: ( Write End-\
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XEQ

CHAIN{1,3)

LISY8

GRUMMAN AIRCRAFT ENGINEER ING CUKP. DECK NO. 45128 LINK )

MATRIX ANALYSIS FOR ISGTRUPLC uk ANISOTROPIC INELASTIC STRUCTURES
IN THE PLASTIC AND CREEP REGIME , :

THIS PROGRAM WRITTEN FOR alR FURLE CONTRACT AF 33(615)-2260

s %

*
ALi212
AL1223
AL1231
ALFAG4
DELEPK

DELEPN
EPBARN

EPBARP
EPCNK
EPCNP
EPSUK
KPMTM
PMTM

SGBARM

[ I I N R

, TABLE UF SYMBULS USED o i
ARRAYS & .
MATRIX OF ANISUTRUPIC PARAMETERS FOR EACH NUDE

MATRIX OF ANISOTRUPIL PAKRAMETERS FOR EACH NUDE

MATRIX OF ANISOTRUPIL PARAMETERS FOR EACH NUDE

MATRIX OF ANISUTRUPIL PARAMETERS FOR FACH NUDE

MATRIX OF NODE STRAIN CHANGES {DELTA EPSILONT

FOR THE X AND Y UIRELTIUNS, AND THE SHEAR STRALN CHANGE

— MATRIX OF EFFECTIVE INELASTIC STRAIN CHANGES
= MATRIX OF EFFECTIVE InNELASIIC STRAINS (EPSILON BAR )UB N)

FOR K-TH CYCLE

~ MATRIX_OF EFFECTIVE thLASTlC STRAINS (EPSILON BAR SuB NI}

FOR K~1 CYCLE (THE PRECEVING CYCLE)

- MATRIX OF EFFECTIVE CREcP STRAINS FUR THIS CYCLE
- MATRIX OF EFFECTIVE CREEP STRAINS FOR PREVIOUS CYCLE
= MATRIX OF NUDE PLASILIL STRAINS (EPSILON SuB U) FUR THE

Xo Y AND SHEAR >STRAINS, FUR THE X~-TH CYCLE

~ TABLE OF CONTRGL CLUE>S tLUAD SYEP, TIME STEPs WRITH SAVLE

TAPE) READ-IN CUNTRUL INFORMATION USED WITH PMTM

- TABLE OF LOAD INCREMENTS, PRINT CONTROL INCREMENTS AND

UPPER LOAD LEVEL PER STEP (CONTROL INFORMATION)

- MATRIX OF EFFECTIVE NUDE STRESSES FOR LAST CYCLE THAT

SHOWED AN INCREAME AT A PARTICULAR NODE

SGBARN — MATRIX OF EFFECTIVE Nuot STRESSES FOR CURRENT CYCLE
SGBARP - MATRIX OF EFFECTIVE NUDE STRESSES FUR PREVIOUS CYCLE
SIGUK =— MATRIX OF NODE STRESSES (SIGMA SUB U) FUR K-TH CYCLE
SIJ  — MATRIX OF STRESSES FGR MEMBER STRAINS
SIM - MATRIX OF STRESSES FUR APPLIED LOADS
TALF12 - MATRIX OF ANISOTRUPIL PARAMETERS (INPUT DATA)
TALF23 - MATRIX OF ANISOIROPIC PARAMETERS {INPUT DATA)
TALF31 - MATRIX OF ANTSOIRUPIC PAKAMETERS (INPUT DATA)
TALF44 - MATRIX OF ANISOTRUPIC PARAMETERS (INPUT DATA)
TEFSTN - MATRIX OF TOTAL -eFFECTIVE STRAINS
TEPSN - TABLE OF STRAIN VALUES UEFINING THE STRESS-STRAIN CURVE
TIMKI ~- MATRIX OF REFERENCE CREEP TIMES FOR ALL NODES
TOVEPS — MATRIX OF TOTAL NUUE STRAINS e
TSIGN = TABLE OF STRESS LEVELS OEF INING THE STRESSSSTRAI™ CURVE
® * VARIABLES AND CLUES * ¢
ALPHA - PARAMETER USED IN THE CREEP EQUATIONS
BETA - PARAMETER USED IN THE CREEP EQUATIONS
E - MODULUS OF ELASTICITY L
GAMMA = PARAMETER USED IN THt CREEP EQUATIONS
- GNU = - POISSONS RATIO L
K - THE CYCLE COUNTER
J KERRSW = CLUE USED FOR TEMPURARY INOICATOR BETWEEN LINKS
; KLU4 ~— CLUE INDICATING TOTAL CUUNT OF MATRICES ON AUXILIARY TAPH
:  KLUS___— CLUE INDICATING MATRICES STILL NOT _READ FRUM AUXIL. VAPE
- o e e e e - - - v93-. - -

Lol
vo02
G003

0005

" cVos

ouor
0008
0009

- 0010

0onli}
col2
0013
0014
ouls
001e
0017
0018
0019
0020
0021
0122

© 0023

CV24
0925
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0937
0038
0039
0040
0041
0042
0043
U044
0045
0046
0047
0048
0049
0050
aos1
0052
0053
0054
0055
0056
0057
0058

0059
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CLUE FOR PRINT LuUNfRUL (WiICH CYCLES)

KLU6 -
KLUB = CLUE FOR PRINT CUNTRUL (wHICH MATRICES)

KLUISO = CLUE FUR ISOTRUPIL ur ANIDUTROPIC RUN (INPUT).

KSET = CLUE FOR THE LUAU UR TiMt LEVEL CURRENTLY IN USE

NA = 3 TIMES THE NOUE LUUNT (INPUT)

NC - NUMBER UF NODES

NINCLD =~ NUMBER UF NUN=-[WLREMENT CYLLES AT EACH LOAD LEVEL (INPUT)
PH - CURRENT LOAD LEVEL

SHRMOD = SHEAR MUDULUS

TIME =~ CURRENT TIME LEvEL _

QUTPUT = SUBROUTINE TO CunTruv PRINTING AT VARYING_LOAD LEVELS

ELASTIC UNLUADING (FOLLOWS HUUKES LAW WHEN UNLJAUING)

COMMON TEFSTN, TOTEPS

COMMON  KLU4y KLUS, KLUo, KLUBs - NA, NCy K
COMMON KERRSWy, NINCLDy  K3ETy PMy E» GNUy SHRMUD
COMMON ALPHA, BETA, uAMMA, TIME, KLUISO
COMMON  PMTM, KPMTH, 2IMy ° SIJy TSIGN, TEPSN

COMMON TALF12, TALF23, TALF34, TALF44

COMMON AL1212, AL1223, ALLZ3ls ALFAG4

DIMENSION TALFL2(11)yTALFZ3014)sTALF3LI11),TALF44(11)
DIMENSION AL12120155)AL1225455)AL1231155) yALFA&4(55)
EQUIVALENCE (TIMKL,TEFSTNIs(TUTEPSDELEPK) o
THESE FOUR ARRAYS ARE EQUIVALENLED IO SAVE CORE SPACE.
DIMENSICN TIMKL{55),TEFSIN(55) ¢ TUTEPS(165) DELEPK(165)
DIMENSION PMTM(10.3l.xpntntxo).51n41651.sxat165.165).751u~t11)
DIMENSION TEPSN(11l)

DIMENSION BLUS)0+10(9) ¢ NRI3) sNU(3) EL(3)

DIMENSION PSTEP(3)

EQUIVALENCE (ID(1)oADL) 1 i0(2),A020,(10(3),A03),(10(4)¢A04),(1D(5)
11ADS5) y [ 1D16),AD6)y ( IDUT),AUT D4 (LUl B)y ADB)» (10191, ADY)

ADL = 606060623144

AD2 = 606060623141
AD3 = 006362312745
AD4 = . 606325476245 e e e om o vt e e oot mame o .
ADS = 632143260102
AD6 = 632143260203
ADT = 632143260301
ADB = - 632143260404

AD9 = 606060606060
BLIL) = 434621246060
BL(2) = 633144256060
BLI3) = 632147256060
BLI4) = 263145626060
BLIS) = 606060606060
KERRSW = 1
INTAPE = 1.
KLUS = 0
KLU = 0
KLUS = 10000
KLUALF = 0
PSTEP(1) = 0.0
.0

PSTER(2) 2 0,0 e e e

PSTEP(3’ = 0.0

Sy 0 RO RO USSR s PR

e . e s s 0T s e tema s m e mem = A WBeEr b emes mr st b . et e e am— e b se

GOV
0261
o2
0063
LN64
0HU6S
Lo o
00u7
0068
0069
0070
0071
0012
0073
0074
NOTYyY
0076
oot
007y
0079

- 09080

0081
0os2
0083
V084
0085
0086
0087
0388
0089
0090
0991
0092
0093
0994
009sy
0096
0097
0098
0099
0100
0101
0102
0103
0104
010%
0106
0107
oto8
0109
0110 .
ol1ll
ol12
olt3
0ll4
0lls

o _,.M.,.«.......-mm-mtq
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e

(2N aNaXal

51

381
382

383

384

301

344

343

302

379

380
52

53

5%
55

00 S1 J22=1,10
KPMTMIJ22) = O
LROW = 0

READ INPUT TAPE Ty1eKLU4,NINCLUZNA, KLU7:KLUISU.ALPHA:BE‘A.GAHHAQ
IGNUTAs 1B, TL o TD,TE ‘

WRITE QUTPUT TAPE 6521+ TAsTOoyTLeTULTE

KLU7 (INPUT) = O TO PRINT PRE-SELECIED HATR{CES UN SELECTED CYCLES
KLUT? (INPUT) = 1 TO PRINT ALL MAIRICES ON SELECTED CYCLES

KLU7 (INPUT) = 2 TO PRINT PREe-SELELTED MATRICES UN ALL CYCLES

KLUT (INPUT) = 3~-9 TO PRINT ALL MATRICES ON ALL CYCLES

IF(KLUT 384,384,381

IFIXKLUT-1)383,383,382

KLU6 = l - —— vhnrk. L. e e —————— o & et e —
KLU6 (QUTPUT) = 1 TO PRINT EALH UYCLE, O TO PRINT SELECTED CYCLES
IFIKLUT-2) 384,384,383

KLUB = 0

KLU8 touTPuUT) = 0 TO PR[NI ALL MATRICES

KLUS (QUTPUT) = 10000 TO PRINT OSELECTED MATRICES

CONTINUE = = = :
1F(XLU4)302,302,301
PRINT 17

PAUSE 11111

TEST INPUT TAPE TO DISTINGUISH GISMU BCD FROH lNELAST[C PROG. SAVE
READ INPUT TAPE 9'310LTA?t ‘
REWIND 9 P
SUBROUTINE FILTAP PUSITIUN) A TaPE AT THE FIRST RECDRD OF ANY FILE
CALL FILTAP(9,2)

IF(LTAPE-21)3434343,344

CONTINUE

SAVED TAPE FROM PREVIOUS RUN UF thLASTlC PLATE

THIS RUN IS A CONTINUATIUN
CALL CHAIN (2,3}

CONTINUE

GISMO FORMAT BCD TAPE

THIS RUN IS A NEW ONE

KLUS = KLU4

INTAPE = 9

CONTINUE i

KLUISO = 0 FOR ISOTROPIL RUN
KLUISO = 1 FOR ANISOTRUPIL RUN
WRITE QUTPUT TAPE 6,9

IF(XLUISO) 380,380,379

CONTINUE R
WRITE QUTPUT TAPE 6110

CONTINUE

READ INPUT TAPE T42,TEMPL,ItMP2,TcMP3,TENP4

LROW = LROW + 1

DO 53 J22=1,5
IFITEMPL®(-BL(J22)))53
CONTINUE

BAD CONTROL CARD

WRITE QUTPUT TAPE 6,12,LRUN

WRITE OUTPUT TAPE 602|TEHPL.IEHP£"k"?3arkﬂp‘
CALL EXIT

GO T0(55,55,55,60,60) 422

IF(LROW-10)506456,53

pess - e eeew e ——————— g s o o

3454953

0116

0117
o118
0t19
0120
0121
0122
0123
0124
0125
0126

. 0127

0128
0i29
0130
0131
0132
0133
0134

.. 0135

Ol3es
0137
0138
0139
0140
0l41
0142
0143
0144
0145
0146
Olal
0148
0149
0150
0151
0152
0153
0154
0155

" 0156

o157
0158
0159
0160
0lel
0162
0le3
0164

0165

0l66

- 0167

0168
0169
0170
0171




(sl akulaXsl ol

56

L3
57

60
302
o3
3ok
365
3866
o7

368
£33

KPMTML N )
KPMTML N )
KPMTM{ N )

| FOR A LOAu alcP

2 FOR A TiMe >IEP

3 TO DUMP MEMURY Initu A SAVE TAPE
PMTM (Ns1) UPPER LIMIT u¥ »TcP .

PMTM (N 2) INTERVAL {Inumeruni) FUR CALCULATION
PMTH (No3) INTERVAL (INuabEMenT) FuR PRINT LUTPUT
KPMTM{LRON) = J22 '
PMTM{LRCW, L} = TENP2

TEMPS = TEMP2-PSTEPLJL2]

PMTM(LROW,2)= SIGNF{TEMP3, JEHPD)

PSTEP(J22) = TEMP2

lF(PHTHlLROﬁoZ)!57o63o57 .

GO T01995499557)¢J22 .
CONTINUE ‘

PMTM(LROW, 3)= TEMP4

G0 70 52

.CONTINUE

DO 361 J23 = 1,10 ‘

IE(KPMTM(J23) 1361430614364
IF(KPHTH(JZ3)-4’363,361'30L

J24 = KPMTM(J23) -

GO YO (364¢366,368),J24 '

WRITE OuTPUT TAPE 6.22.PHIHIJ¢3.ZI9PHTH|JZS¢1)
[F{PMTM{J23+3)13614361,305

WRITE OQUTPUT TAPE 6923 +PHINLIZIS) . .

GO 1O 361 '

WR1TE QUTPUT TAPE 6.24,PHIHIJ£$|£"PHTH(JZSvl)
!F(PHIH(JZJy3))361.361.307 . .

WRITE QUTPUT TAPE 6926, PHINLIZINI)

GO TO 361

WRITE OUTPUT TAPE 6,27

CONT INUE .

WRITE QUIPUT TAPE 6928y NINCLY

. WRITE DUTPUT TAPE 6:25,ALPHA95€IA.6AHHA

86
a7
91
92
93
96
97

303

306

108
110

KT8
321

IFLGNU1B6287,87

GNU = .3

CONT INUE .

IF{NAD999, 91492

NA = 165
IF(NA=165193493,999
CONTINUE

IF (NA=3#(NA/31)1999,97,999
NC = NA/3

LF (KLU4%) 304,304,303
TE{KLU4-4)306,306,99%
CONTINUE

INTAPE = 9 _
KLUS = KLUS - 1

READ INPUT TAPE INTAPE, 3NAME s NRUWS sNCOL Sy NFORM _
00 110 [21=1,

[F(NAME-ID{121)1110+311+410

CUNTINUE

BAD INPUT - MATRIX NAME Nul ALCEPTAGLE

GO ta 997 .

6o o .(::m.a_.zz.,_..g_s..3,25..3.2:.4:4&;421,::9,;1..1.»11_2.1. e

Do 331 I1 =1,16%

0172
0173
0l 14
oL
Ci7o
0117
017
oL79
vl80
gi8l
0182
0183
0184
0185
0136
o187
o188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
n202
0203
N204
0205
0206
0207
0208

‘0209

0210
0211
o212
e213
0214
0215
6216
e217
0218
0219
0220
0221
0222
0223
0224
0225

0226

0227




[ vy ST CTpEIRNINT ST Y ORI\ et
R : A

33

322
332

323
333

324
33«

32%°
335

326
336

327
337

328

338

111
112

109
308

304
113

121

127

128
129

122

130

Sinill) = 0.0

WRITE OUTPUT TAPE 64209 NaMcyNRUWS NCOLS, INTAPE

GU TO 111 ,

00 332 Il =1,165
D0 332 12 =1,165
S1J(I1,12) = 0.0
Go_70 111

D0 333 11 = 1,11

TSIGN(I1) = 0.0 _
G0 7O 111

DO 334 Il = 1,11

TEPSN(ILl) = 0.0

TALF12{Il)= 0.0
KLUALF ~ = KLUALF ¢ 1
G0 10 111

00 336 I1 = 1,11
TALF23tIl)= 0.0

KLUALF = KLUALF + 2
GO TO 111

DO 337 11 = 1,11
TALF31(11)= 0.C
KLUALF = KLUALF + 4

00 338 11 = 1,11
TALF44(I1)= Q.0
KLUALF = KLUALF +8
G0 10 111

G0 7O (llanlZo112'llZoll&vllZ:lld:llZnlSOlylZl
READ INPUT TAPE lNTAPE-4-(NR(lzZ)oND(IZZ)oEL(12219122=1.3)

IF(NR11)1996,109,113
IF{KLU5)308,308,306
INTAPE = 7
GO TO 108
GO 70 308

GO TO §121,12241254126,2 201.204.204'206'15011121

READ IN ARRAY SIGMA-IM
MROW = NR{1)

WRITE OUTPUT TAPE 6.6.(NRI!£2).ND(IZZ)’ELIIZZ)'122*1033

SIN  (MROW) = ELI1)
IF(EL(2))127,128,127
MRON_= NR12)

e e ——— e 0.+ . e b o e = & e

o etms meinien

SIM  (MROW) = EL(2)
IF{EL(3))129,112,129
MRON = NR(3)

SIM  {MROW) = EL(3)
G0 T0 112

READ IN ARRAY SIGMA-1J

MROW = NR(1)
MCOL = NO{(1) _

IF(EL(2))130,131,130
MROW = NR{2)

" mCOL = ND(2)

stJ (MRONW,MCOL) = EL(2)

0228
0229
0230
0231
0232
0233
0234 _
0235

0230
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
3257
0258
0259
0260
a26l
0262
0263
0264

© 0265

0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282

‘0283



131

- 132

125
139

140
141

126

142

143

144

201

221

222

223

202

224
225

. 226

203
227
228
229

204

IFLEL13))1324112,132
MROW = NR({3) '
MCOL = ND(3)

StJ (MRUW,MCOL) = EL{(3)

GO YO 112

READ IN ARRAY TSIGN (TABLc Jur S1uMA BAR N)
MROW = NRI{I)

TSIGN{MROW) = EL(1)

IFLEL{2))139,140,139

MROW = NR({2)

TSIGN{MROW) = EL(2)

IFLEL{3))141,112,141

MROW = NR(3)

TSIGN(MRUN) = ELL3)

GO TO 112

READ IN ARRAY TEPSN (TAﬂLL Ur ePSILUN BAR N)
MROW = NR{1)

TEPSNIMROW) = EL(1)

IFLELL2))142,143,142

MROW = NR{2)
TEPSN{MROW) = EL(2)
IF(ELL3))144,4112,144
MROW = NR(3)
TEPSNIMROW) = EL(3)
GO 1O 112

READ IN ALPHA TABLES
MROW = NR(1) :
TALF12({MROM) = ELI{1)
IFLELL2))221,222,221
MROW = NR(2)
TALFL2(MROM) = EL{2)
IFLEL(3))223,112,223
MROW = NR(3)
TALF12IMROW) = EL(3)
GO Y0 112

MROW = NR{1l) :
TALF23(MROW) = EL(1)
lFlEL(Z)IZ£§v225v224
MROM = NR(2)
TALF23(MRONW) = EL(2)
lF(EL(3)l226v112:226
MROW = NR(3)
TALF23(MRON) = EL(3)
GO 10 112

MROW = NR{1)
TALF31{MRON) = EL{L)
IF(EL12))227,228,227
MRW = NR(2)
TALF3IL(MROW) = EL(2)
IF{EL(3))229,112,229
MROW = NRL(3)
TALF31{MROW) = EL(3)
GO 70 112

MROW = NR{1)
TALF44(MROW) = EL(1)

a0 ———— s 1o o e e

IFIEL(2))230,231,230

028¢%
0285
0286
0247
0288
€289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
01300
0301
0302
0303
0304
© 0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0323
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339




4
230 MROW = NR{2) o . 2 2.1 I
TALF44(MROW) = EL(2) 0341
231 IF(EL(3))232,112,232 ] 0342
232 MROW = NRI(3) ‘ 0343
TALF44(MROW) = EL{3) 0344
GO TO 112 , : 0345
150 CONTINGE_ . _ . . e e .. 0346
- IF{KLULISO) 165,165,161 - 0347
lol IF(KLUALF=-15)162,167,4162 i _ ) 0348
162 WRITE OUTPUT TAPE 6432,KLUALF 0349
IF{KLU4) 164,164,163 0350
c SUBROUTINE RUN REWINDS ANU UNLuAUS THE DESIGNATED TAPE 0351
163 CALL RUNI9Y . = e .. 0352
164 CALL EXIT 0353
165 DO 166 1 = 1,11 o 0354
TALF12({1)= 0.5 : 01455
TALF23(1)= 0.5 - 0356
TALF31(1)= 0.5 ‘ \ 0357
l66 TALFe4tD)= 1.0 = = _ et ot e e e 0358
167 CONTINUE » S 0359
E = TSIGN(2}/TEPSN(2) " ' 0360
81 SHRMOD = E/(2.#{1.+GNU)) 036l
WRITE OQUTPUT TAPE 6495.EySHRMUD,GNU 0362
WRITE OUTPUT TAPE 646 . 0363
DO 149 [1=1lyl) 0364
149 WRITE QUTPUT TAPE 6'7vllnlble(ll)-IEPSN(Il)-TALFIZlIll TALFZ3(11) 0365
LeTALF31(I1)4TALF44(11) _ , , 0366
K =20 ' 0367
PM = 0.0 . _ 0368
IF{KLU4)1529152,209 0369
¢ SUBROUTINE RUN REWINDS ANV UNLUAUS THE DESIGNATED TAPE . 0370
209 CALL RUN(9) , o , 0371
151 PRINT 19 o 0372
152 CALL CHAIN(443) ’ . 0373
994 WRITE QUTPUT TAPE 6418:KLU% ' : 0374
CALL EXIT : : 0375
995 WRITE QUTPUT TAPE 6ylbglmON__ , 0376
CALL EXIT ‘ ) ‘ . 0377
996 CONTINUE 4 o L v3re
WRITE QUTPUT TAPE 6414,NAME . 0379
WRETE OUTPUT TAPE 694y INR(L122) o NULER2)4ELI122),82221,3) 0380
CALL EXIT 0381
997 CONTINUE B _ e 0382
WR1 E OUTPUT TAPE 6y 13y NAME : 0383
CALL EXIT . o S 0384
J 999 WRITE QUTPUT TAPE 6411.NA 0385
: CALL EXIY o . : 01386
; L FORMAT(I14213421141X42E10.352F2.290UX¢5A6) - 0387
; 2 FORMAT(6XyA%9E10.65E10415E1041) L ... 0388
; 3 FORMAT{LliX,A6,1X,213,8X,11) 0389
N 4 FORMAT(3{1Xs2134EL6.8) ) 0390
- 5 FORMAT(26H1 MODULUS OF ELASTICITY = (F1ll.094H PSI46Xy 16HSHEAR MODU 0391
i 1LUS = yF11.004H PSI»6Xy5HNU = 4F0.3) 0392
2 6 FORMAT(41HO TABLE OF VALUE> Fur STRESS—STRAIN CURVE // G393
& 15X, 29HPOINT  STRESS LEVEL STRAINTX s BHALPHA 127Xy BHALPHA 23,17X 0394
H L1eB8HALPHA 3197Xo8HALPHA 44/16X93HPS1¢9X9THING/ING//) 0395
; .
%ﬁ; - - T 99 -
i .
:
1
i




7
9

2V

3l
32

FURMAT(OXo1392XeF1llo24503A0FL2edil)

FURMAT( /7791 THIS ISUTRUPLL Kuit USES ELASTIC UNLUAUING (HOuKES L
1AW) wiTH STRAIN HARDCNINu) .

FORMAT{ 1H+,5X 2HAN)

FURMAT{1JOH ERROR NA=14)

FURMAT{26H ERROR~ INCREMen] ULAKL wu..ll SH NeG.)

FORMAT(1oH ERROR=-MATRIX ,A0)

CFORMAT{L17H ERROR-NFG.INDLX Ao)

FORMAT{33H ERROR-NU INTERVAL-INLKEMENT CARD, I 3) C :
FORMAT(SLIHO PAUSE 11111 Ju Muunl INPUT DATA TAPE UN DRIVE A-9//71)
FORMAT(TH ERRUR-[S,18H TnNPUF MATRICES NG)

FORMAT(YYH DEMUUNT AND Save TalPr A-3. DATA HAS BEEN READ INTU HE*J :

1RY. THE PROGRAM CONTINUES U KUNG//Z)

FORMAT(//5X ¢ THMATRIX sA09lXgLl390r KUNS X 4 13919H CULUMNS FRUM TﬂPt
1 ,12)

FORMAT{1HL + 29X+ 5A06)

FORMATE5X g LOHLDAD INCREMENTS 1#9 eLllH POUNDS T3 oF10.2,7H PJUNDS )
FORMAT(LH#, 6 Xy 19HPRINT WUIPUT EVERY 1F9.2,7H POUNDS)

FORMAT(SX, 16HTIME INCREMuinlS 9r¥e49llH HOURS TU 4Fl0e%y6H HUURS)
FORMAT{/ 9H ALPHA = ELO.3y5A,THoETA = 4E10.345X, BHLAMMA = ,E LU.3)
FORMAT{IH#,61Xs 19HPRINT UuTPUT EVERY sFI.450H HUUKS) i
FURMAT(5X 9 3SHSTORE MEMURY uin TAPE A-6y THEN EXIT) '
FURMAT(//5Xy 134484 NUN~- INLK:HtNT CYLLES AT EACH LUAD OR TIME LEVCIL
1) ' .
FURMATL{10X,12)

FORMAT(S5Xs12,65H ALPHA TAdL:b werk kEAD IN UF 4 REQUIRED. CHECK Yu
LUR INPUT CARDS.)

ENDU141y09090+091vls091s090p0yus0)

CHAIN(2,3) - o : .

. LISTY

100

= Sl el R L RGPS e ey

U396
0397
0398

" 0399

0400
0401
1402
0403
0404
0405
0400
0407
04038
0409
0410
Call

Cal2

0413
0414
415
0416
0417
0418
0419

0420

0421
0422

0424
0425




451282 GRUMMAN AIRCRAFT ENSINEERING CURP. DECK M. ©5128 LINK 2
cssxzsz MATRIX ANALYSIS OF INcLASTIC PLATE = LINK 2 - WITH CREEP T 0621
‘THIS LINK READS IN A SAVELD BINARY TAPE - FIRST PART 0428
.. COMMON TEFSTN, YOTEPS ) ) 0429
_COMMUN  KLU%, KLUS,  KLJOy  KLUB, NA, NCy K - 0430
COMMON KERRSWs NINCLD,  K3ET, PM,y Ey GNU, SHRMOD 0431
_.COMMON ALPHA, BETA, UAMMA, TIME, KLUISO U432
COMMON  PMTM, . KPMTM, 5iMy S1Jy  TSIGN, TEPSN N433
COMMON TALF12, TALF23, TALF31, TALF44 0434
COMMON ALL212, ALL1223, ALLZ3l, ALFA44 o 0425
" DIMENSION TALF12{11),TALF23011)9TALE3LTLL)sTALFAS(LL) -~ 04306
DIMENSION AL1212(55), ALI&AJ(D&).ALLZSI(SS) ALFA%4(55) _ 0431
COMMON SIGUK, EPSUK 0438
EQUIVALENCE {TIMK1,TEFSTN)oLTUTEPS VELEPK) ‘ ‘ o 0439
c " THESE.FOUR ARRAYS ARE EQUIVALENCEU TO SAVE CORE SPACE. 440
- DIMENSIUN TIMKI(S55) s TEFSTNIS55) ¢ TUTEPS{165) JDELEPK(165) 0441
‘DIMENSION Pnrnllo.a).Kpnrn(xui;ann(165).514(165.165).TSIGN(11) 0442
DIMENSION TEPSN(L11),SIGUK{L05) oEPSUR(165) 0443
DIMENSION BLI(S) a4k
OIMENSION PSTEP{3) ) _— L .. 0445
READ TAPE 9,KLU4yXLUS, LAs LDOsNAINCyKsKERRSWH, LCyKSET+PMot, 0446
‘LGNU» SHRMOU  ALPHA yBETA, GAMMA, T 1ME S KLUISO , 0447
c KLU6 = 1 will PRINT EVERY LYULE, U WILL PRINT UNLY SELECTED CYCLES Va4l
c KLUB =0 WILL PRINT ALL MATRICE>y NUN-ZERQ PRINTS SELECTED MATRICES 0449
C NINCLD (NON-INCREMENT CYLLES AT cACH LOAD LEVEL) ACCEPTED FROM - 0450
c INPUT CUNTROL CARD _ L 0451
WRITE OUTPUT TAPE 649 ' ‘ 0452
IFIKLUTSD)380,380,379 , ‘ 0453
‘ 379 CONTINUE S 0454
[ ' WRITE QUTPUT TAPE 6,10 , 0455
380 CONTINUE , 0456
3 NCLU = 1 e _ e _ 0457
KERRSW = 2 : 0455
B BLIL1) = 434621246060 : . 0459
8 BLI2) = 633144256060 , 0460
8 BL(3) = 632147256060 _ S o 0461
-8 BL(4) = 263145626060 . ' ‘ 0462
- B BLIS) = 606060606060 e L , 0463
. : 00 51 142 = 1,10 0404
' S1 KPMTM{[42) = 0 , S o 04065
PSTEP(L) = 0.0 ' D460
PSTEP(2) = o,o ] _ o R _ 0467
PSTEP(3) = 0.0 0468
LROW = O _ . e e e e 0469
52 READ INPUT TAPE 742,TEMPL, lenpz.renp3.tenp4 T 0470
LROW = LROW + 1 N o ~ 0471
D0 53 J22=1,5 ‘ ' natv2
8 - IF(TEMPL*(-BL(J221))53,54923 ‘ : 0473
53 CONTINUE ‘ 0474
c . BAD CONTROL CARD e 04175
WRITE QUTPUT TAPE 6¢12,LKUN 0476
WRITE QUTPUT YAPE 692, TENPL, TEMP2, TEMP3, TENP4 ) ' 0477
. CALL EXIT _ 0478
: 54 GO 10155.55.55,60.6on'J22 o 0479
. 55 IF(LROW-10156,56,53 - 0480

C°  KPMTM{ N_) = 1 FOR A LOAU STiP . e 0481




¢ KPMTML N ) = 2 FUR A TIMc Sicp _ 0482
c KPMTMU N ) = 3 TU DUMP McMurY INTu A SAVE TAPE 0483
¢ PMTM (Ns1) = UPPER LIMIT UF SIEP 0484
¢ PMTM (N,2) = INTERVAL (INuikcMeNT) FUR CALCULATIUN 0485
c PMTM (N,3) = INTERVAL (InunEMENT) FUR PRINT UUTPUT 0486
56 KPMTM(LKOW) = J22 0457
NCLU = 2 ) 0488

KSET = 1 0489
PMTMILRUW, L )= TEMP2 0490

TEMPS = TEMP2-PSTEP(JC2) 0491
PMTM{LROW,2)= SIGNF(TEMP3, IEMPS) 0492
PSTEPLJ22) = TEMP2 0493
IF(PMTMILRUN 23157463457 , o . . 0494

63 GO TO (995,995,57),J422 0495

57 CUNTINUE : 0496
PMTMILROW,3)= TEMP4 0497

GO T 52 0498

60 CONTINUE 0499

GO TO (61462) 4NCLU , , ) 0500

62 CONTINUE , : 0501
READ TAPE 9,JUNK : 0502

READ TAPE 9,JUNK © ns93

GO TO 64 0504

61 CONTINUE : : : 0505
READ TAPE 9,PMTM - . _ 0506

READ TAPE 9,KPMTM 0507

64 CUNTINUE _ : _ 0508
WRITE OUTPUT TAPE 6,41 0509

DO 361 423 = 1,10 : 0510
IF(KPMTM{J23)1361,361,362 . 0511

302 IF(KPMTH(J23)~4) 363,361,301 ) S 0512
363 J24 = KPMTM(J23) 0513

, GO TO (364,366,368),J24 0514
364 WRITE QUTPUT TAPE 6,22 ,PMIMIJZ342) sPNTM(J23,1) 0515
IF(PMTM(J23,3))361,361,305 0516

365 WRITE OUTPUT TAPE 6423 ,PNIM(J23,3) ' 0517

' GO TO 361 e e _ 0518
) , 366 WRITE OUTPUT TAPE 6,24,PHTMIJZ23,2) yPMTH{J23,1) 0519
IF(PMTM{J23,3))361,361,307 0520

367 WRITE OQUTPUT TAPE 6,25,PMIM(J23,3) - . , 0521
GU TO 361 _ - v 0522

368 WRITE OUTPUT TAPE 6,27 0523
361 CONTINUE N o ps24
WRITE OUTPUT TAPE 64263NINCLD 0525

READ TAPE  9,SIM . , : : 0526

READ TAPE  9,SIJ° 0527

READ TAPE  9,TSIGN 0528

READ TAPE  9,TEPSN ' 0529

READ TAPE 94TALFl2 .. e e e .. 03530

READ TAPE 9,TALF23 v : 0531

READ TAPE 9,TALF3l 0532

READ TAPE 9,TALF44 0533

READ TAPE 9,AL1212 o _ 0534

READ TAPE 9,AL1223 ‘ 0535

READ TAPE _9,AL1231 _ e e e e e 0538

READ TAPE ~9,ALFA44 0537

102




995

O N -

27

READ TAPE  94SIGUK

READ TAPE 9,EP SUK

CALL CHAIN (3,3)

WRITE QUTPUT TAPE 6416sLlnun
CALL EXIT

FORMAT( LHU 29X 3 THCONTINUATIUN RUn = INELASTIC ANALYSIS)
FORMAT(6X9A49EL0.69E10.14£10.1)

FORMAT(//7T9H THIS [SOTRUPIC RUN USES ELASTIC UNLOADING {HUUKES L
1ANW) WITH STRAIN HARDENINu)

FORMAT{ 1H®,5X ¢ 2HAN)

FORMAT(26H ERROR- INCREMENI LARD NU<9I3¢5H NoGe)

FORMAT{33H ERROR~NU INTERVAL=INLREMENT CARD,I3)

© e e 4l e ———

FORMAT(5Xe LOHLOAD INCREMENTS sF9.2911H POUNDS TO .FIO.Z.TH _POUNDS )

FORMAT{ LH*¢, 61K, L9HPRINT UUTPUT EVERY +F9.2,7H POUNDS)
FORMAT(5X,16HTIME INCREMENTS 'f9¢4'llﬂ HOURS TO oF10.496H HUURS)
FORMAT{ 1H+,61 Xy 19HPRINT UUTPUT EVEKY »F9.446H HOURS)
FORMAT(//5Xs13948H NON-INCREMENT LYLLES AT EACH LUAU OR TIME LEVEL
1} :

FORMAT (5, 35HSTORE MEMORY u TAPE_A-6, THEN EXIT)
END(1vly0909090919140¢1:2050e090,0)

CHAIN(3,3)
LISTS8

P, nem aeammaicn - o - o

o msiate e o e e Bt ——— w— —

o ——— s —— e .

0538
0539
0540
0541
0542
0543
0544
0545

0546
0547
0548
0549
0550
0551
0552
0553
N554
0555

0556

0558
0559




451283 GRUMMAN ATRCRAFT ENGINEERING wURP. DECR NJ. 45128 LINKC 3

C451283 MATRIX ANALYSIS OF IheeadiiC PuAlE LINK 3 - wiTH CREEP

C
¢

LK R X 2R X 2 X N N

THIS IS THE SECOND HALF uF uiku LINK 2
THIS LINK READS IN A SAVeU vinNARY 1APE - SECUND PART
CUMMUN TEFSTN, TOTEPS
CUMMON KL U4, KLUS KLuoy KLUB, NA, NC K
COMMON KERRSw,y NINCLO, A>tl, PMy Es GNUy SHRMULO
COMMUN ALPHA, BETA, wAMMA, TIiME, KLUISO
CUMMUN PMTM, KPMTM, aim, siJdsy TSIGN, TEPSN
CUMMON TALF 12, TALEZ23, TALFral, TALF44
COMMON ALL1212, AL1223, ALLZILy ALFA44
OIMENSION TALFLZU1)) o TALFL3LLL)»TALF3L1111),TALFG4(1])
DIMENSIUN ALlZlZ(SS)vALlé‘J()))'ALllal(SS)oALFAQQ(55)
COMMON SIGUK, EPSUK
COMMON SGBARN, SGRARP, SudAKH: EP3ARN, EPBARP' OELEPN
COMMUN EPCNKy EPCNP
EQUIVALENCE lTlHKloTEFSTN)ol[uTtP),UtLEPK)
THESE FUUR ARRAYS AKRE ECuivAaLEnCEYD TO SAVE CURE SPACE.
DIMENSION TIMKLIUS3) o TEFSIntSD2 o JUTEPSI165) ¢NDLELEPK(L65)
DIMENSIUN PMTMI10,3) 4KPMIMILU) 95IMIL65),51J11654165),TSIGNILL)
ODIMENSION TEPSNUL11),SIGURLILOS) sEP3UR{165),5GBARN(55)SGRARPI55)
DIMENSIUN SGBARM(55) EPBARNI DY) ycPOARP{55) JDELEPN(55) 4EPCNK(55)
DIMENSIUN EPCNP(5%)
READ TAPE 99 SGBARN
READ TAPE 9,SGBARP
READ TAPE 9,S5GBARM
READ TAPE 9,EPBARN
REAU TAPE  9,EPBARP
READ TAPE 9,DELEPN
READ TAPE 9,EPCNK
READ TAPE 9,EPCNP
SUBROUTINE RUN REWINDS Anv UNLUADS THE DESIGNATED TAPE
CALL RUN{9)
PRINT 31
WRITE QUTPUT TAPE 695,E,SHKMUDyuNU
wWRITEF UUTPUT TAPE 6,6
00 149 1l=1,11
149 WRITE QUTPUT TAPE 6,7, llgl)lbw‘lll1IEPSN(ll’tTALPlZ(ll)yTALFZ’(lll
: 1o TALF31 (I}, TALF44(IL)

CALL CHAIN (4,3}

5 FORMAT{26M0 MODULUS OF ELASTICATY = 4F11.004H PSI 96Xy LOHSHEAR MOUY
LLUS = 9FLLle094H PS146Xe5nN0 = 4Fbe3)

6 FORMAT{41HO TABLE OF VALUES FUR STRESS-STRAIN CURVE //
15X, 29HPOINT STRESS LEVEL STRALN, Xy BHALPHA lly'X.BHALPHA 23,7X
1yBHALPHA 313 7XeBHALPHA 44/710Xs3HPS1 ¢9XsTHING/ING//)

7 FORMAT{OX ) 1392X9F1l1le245({3X9F1268))

31 FORMAT(118HOIF NECESSARY lu STuP IHIS RUN BECAUSt IT EXCEEUS THE [
LIME ESTIMATE, PUT A RING Iivx THE sAVe TAPE ON A-5 AND CHANGC IT /
256H TO DRIVE A-6 TO UPVDATE 1T, TneN PUT SENSE SilTLH 6 ONo 77)

END(1¢1,040,0¢09191+0919040909090)

SAVE TAPE B-1 UNLESS ON-Lli& PRINT SAYS IT ‘HAS BEEN PROCESSED
PUT SENSE SWITCH 6 ON TO END THE RUN IF IT EXCEEDS THE TIME ESTIM.

IF PAUSE 1 UCCURS (SENSE SWlICH o uR INTERNAL CONTRUL), MOUNT A
BLANK TAPE ON A~6. THIS IaPt wILL HAVE RESTART DATA WRITTEN ON [T,
AND MUST BE SAVED.

CHAIN(4,3)

LISTS

104

05061
0502
0263
0504
0565
0566
0»67
0508
05069
079
0571
05172
U573
0574
05175
0576
0577
0578
0579
N5860
0581
0582
05483
0584
nN585
0586

0587

0588
0589
0%90
0591
0592
0593
0594
0595
0596
0597
0598
0599
€600
0601
0602
0603
0604
0605
0606
0607
0608

0610
0all
0612
O6l3
0614
0615
0616
o617
0618
0619
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451284 GRUMMAN AIRCRAFT ENGINcErING LUKP. DECK NJ. 45128 LINK 4

C45128% MATRIX ANALYSIS OF lNELAQIjQ_?LAIE_f‘LlNK 4 - W[TH CREEP,

Cc THIS LINK UUES THE CALCULAIiUN AnU wWRITES PRINT UUTPUT
COMMON TEFSTN, TOTEPS '
COMMON KLU%4 KLUS, Kiloy KL, NA, NC K
CUMMON KERRSWs NINCLD, Kottty PM, - €y GNUy SHEMUD

COMMON ALPHA,. BETA, uAMMA, TIME, KLUISO
CUMMON  PMTM, KPMTM, siMg  5IJs TSIGN, TEPSN.'
COMMON TALF12, TALF23, TALF31l, TALF44 .
COMMON AL1212, AL1223, ALiZ3Ll, ALFA44 ‘
DIMENSIUN TALF120110, TALFZ3(11) o TALF31(11),TALF44(11)
" DIMENSION AL1212(55),AL1£23(55) yALl231(55),ALFA44(55)
COMMON SIGUK, EPSUK
COMMON SGBARN, SGBARP, $LBARM, tPuARNy EPBARP, DELEPN
COMMUN EPCNKy EPCNP
EQUIVALENCE (TIMK1,TEFSTN) o {TUTEPS,DELEPK)
THESE FOUR ARRAYS ARE tQUIVALENCEw TU SAVE CURE SPACE.
THEY ARE NUT THE SAME, BUT ARE Nul NEEDED AT THt SAME TIME
AND DO NOT CARRY.FRUM CYCLE Tu CYLLE.
DIMENSIUN TIMK1(55) ,TEFSIN(35)s TUTLPS(165) DELEPKILES)
DIMENSION PMTM{L10,3),KPMTMILU}SsMI465),S1J(165,165),TSIGNI11)
DIMENSION TEPSN{11) SIGUR(L62) EPSUKIL165) 4 SGBARN(55),SGBARP(55)
DIMENSION SGBARM(55) ,EPBARNI 55) s cPBARP(55) 4DELEPNISS) 4 EPCNK(55)
DIMENSIUN EPCNP(55)
KSET = KSET .
KERRSW = KERRSW - e et e ..
GO TO (418,419),KERRSW
c INITIALIZE WORK AREAS
418 DO 102 I1 = 1,165
EPSUK (I1) = 0.0
102 SIGUK(IL) = 0.0 o
DU 103 Il = 1,455 . S R
DELEPN(IL) = 0.0
SGBARN(ILl) = 0.0
SGBARP(I1) = 0.0
SGBARM{I1) = 0.0
EPBARP(11) = 0.0
EPCNK(I1) = 0.0 _ S U
EPCNP(I1) = 0.0 ‘ :
- AL1212(11)= 2.%TALF12{2)
AL1223111)= TALF12(2) + TALFZ3(2)
ALL231(11)= TALF1212) + TALF31(2)
-ALFA44(11)= TALF44(2)
103 EPBARN(IL) =0.0_.
KSET = 1
TIME = 0.0
419 CONTINUE
REWIND 8
KSET = KSET .
KERRSW _ = KERRSW . _ e

OO0

NINCPM = NINCLD + 2
NINTOT = NINCLD + 1
151 K = K+ 1

KLU2 = 1 ) : ,
c IF KLU2 = 0, THE CYCLE OF UPERATIUNS WILL BE PRINTED
c KLy6 = | WILL PRINT EVERY CYCLE, O WILL PRINT ONLY SELECTED CYCLES

195

0621
0622
0623

- 0624

0625
Vo226
0627
0628
0629 .

0630 .

No3l

C 0632

0633
0634
0635
0636
0637
N638
0539
Qo040
Ooal
0642
0643
0644
0645
0646
Qoal
0648
0649
0650
0b51

0659
0660
0561

. 0662

0663
0664
05065
0666
0667
0668
0669
0670
0671
0672
0673
0674

0675
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e e e g w1 s b et s

249
2438

2l
211

437

4lo

300
302

303

304

341
342
305
34>
307
309
308

306
316

315
355
k3N
3le
318

319
320
321
322
34
l B
33

510
511

513

KLUS = O WilL PRINT ALL MAlniltas NUN-2FRU PRINIS SELECIED UNES

IF (KLUG 124842484249
KLU2 = 0
CUNTINUE

1F(K-1)270,270,271
KLU2 = O
CUNTINUE
GO TO (416,417)4KERRSW
KLUZ = 0
KERRSW = 1
CUNTINUE v .
KSET 1S THE ROW OF KPMTM ux PMIM belNG USED (CURRENT LUAD OR
TIME LEVEL)
IF(KSET-11)301,4319,319
IFUKPMTM(KSET) ) 3023024303
KSET = KSET + 1
GO TO 300

IF(KPMTMIKSET )=4)304,302,302
VARIAALE (J24) INDICATES A LUAU CYLLE t1)s A TIME CYLLE (2)y
OR WRITE MEMORY ON A SAVE TAPE 13)
J24 = KPMTMIKSET)
KSET = KSET
KERRSW = KERRSW

LF(PMTMIKSET,2)) 342 41342, 341
GU TO (30543150423),J24
GU TO 1345,3554423)4J24

LF (PMTMKSET, 1)- (PM+PMTMIKIET 2202 )306,307,308
1F (PMTM(KSETy 1)~ { PMsPMTMIRSET22)) 108,307,306
IF(NINCLD) 309,309,308
KLU2 = 0
DELPM = PMTM(KSET,2)
GU TO 154

IF (NINCPM-2) 31643164154
KLU2. = 0
G0 TO 302

LF(PMTM(KSET, 1)~ ( TIME+PMTM(RSET2)1)3064317,318
1F(PMTMIKSET, 1)~ (TIME+PMIM(KSET+211)3184317,306
IF(NINCLD) 314,314,318

KLUZ = O

DELTIM= PMTM(KSET,2)
G0 TO 330

1F(KLU2)205,205,320

KLU2 = 0
KSET = KSET - 1
IF(KSET)205,205,321
1F(KPMTMIKSET))3209320,322

J24 = KPMTM(KSET)
GO TO (308,318),324

“PNTINUE

NTINUE

ANTINUE

EF(NINCLO)S01,501,510
1FIk=1)501,501,511
NINCPM = NINCPM - 1
IFININCPM=31513,515,515
CONTINUE

106

Q676
06717
0678
0679
0680
0681
0682
Q683
0684
0685
QouBb6
06b7
0588
0689
069Q
0691
0692
0693
3694
0695
0696
0697

o et e
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anon

512
51%

501
502

503
504

514
525
523

524
324

325

326

327
328

332

337

GO TO (5014512),NINCPM

NINCSN = 1 MEANS THIS IS A RE-LYCik STEP (NO LOAD UR TIME INCREASE)
NINLSW = 2 MEANS THIS IS LAMl RE-LYLLE AT THIS LOAD OUR TIME LEVEL
NINCSW = 3 MEANS THES IS A wuav UR TIME INCREMENT STEP

NINCSW = 2

GU 10 514

NINCSW = ]

GO 70 514

GO TO (502+4503),J24

PM = PM ¢+ DELPM

GO 10 504

TIME = TIME + DELTIM i

NINCPM = NINCLD ¢ 2 -

NINCSW = 3

CONTINUE

lFlNlNCLDl526o526'525

NINKCY = NINCLD + 3 -~ NINCPM

GO 10 (523,5244524) NINCSH

NINKLY = NINKCY - (NINKCY/LUJ‘LU

IFININKLU) 328,524,328

NINKCY IS COUNT OF TOTAL CYlLcd AT IHIS LOAD OR VIME LEVEL

NINKLU = O WILL PRINT EAULH TENTH CYCLE, IF THIS LUAD OR
TIME LEVEL IS TO BE PRINTED

GO TO (324,325),424 : .

CALL outpur(pn.pnrn«x5er,:)lnLy1¢~__,, L

GU TO 326

CALL QUTPUT(TIME,PMTM(KSETy3)0KLUL)

1F(KLU2)327,328,327

KLU2 = KLUL

CONTINUE , :
IF(TIME)333,333,332 e
GO T0(333,337),J24 :
COMPUTE REFERENCE CREEP TiMk Fun ALL NODES

D0 331 I3 = 1,NC

EPCNP(13) = EPCNK(I3)

" FACNUM = ABSF(EPCNP{I3))

EXPON = BETASABSF(SGBARNI(I3))
FACON]1 ={ 2.71828183%¢EXPUN)-l.
TIMK1(I3) = (FACNUM/UALPHASFALUNL]} )**{]./GAMMA}

" GO TO (3364+3364334) yNINCOW

336

334

331
333
156 F

259

[ B N

"EPCNK{13) = (ALPHAS(TIMKL{13)

CONYINUE i )
} ssGAMMA ) *FACDN1
GO TO 331 R
CONTINUE
EPCNKI13) = (ALPHA‘(TIHKL(LJ)*U&LIIH)“GAHHAI'FACDNI
CONTINUE
CONTINUE

FA = 2147§1433125
KLU9 = 1 , .
IF(XLU2})250,250,251 -
CUNTINUE
LABEL = APPLIED LOAD
FB = 246043462124
FC = 606060606060
KLUSIZ = 2
WRITE TAPE H'KLU9.KLUSIZ.PA.F'.FC'PH.TIHE

107

0732
0733
0734
0735
0136
0737
0738
0739
0740

0741
0742

0743
0744
0745
07146
G147
0748
0749
0750
0751
0752
0753
0754
0755
0756
0157
0758
0759
0760
0761
0762
0763
0764
0765
0766

0167

0708
0769
0779
o771
0172
0773
0774
or75
0776
0777
0779
0179
0780
6781
0or82
0783
0784
0785
0786
0787
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251 CUNTINUE
KLU = 2
TF(KLU24KLUB) 252,252,253
252 CUNTINUE
LABEL = RCF. CREEP TIME
FA = 512526336023
FB = 912525476003
FC = 314425606060
WRITE TAPE 8,KLU9, NCoragFBeFLa LTIMKL (J1),Jl=1,NC)
FA = 252626336023
FB = 512525476062
FC = 635121314560
WRITE TAPE 8,KLU9, NColrngbgbLy (EPCNK (J1)9J1=1,NC)
253 CONTINUE :
SAVE PRECENDING CYCLE VALJE>S ur EPUOARN
DO 152 Il = 1459
152 EPuARP(I1) = EPHARNIIL) _
CALCULATE NUDE STRESSES = MAIRIX 31oUK - FRAME SIZE 16% X 1
00 861 I5 = .1,NA
SIGUKIIS) SIMIIY%)*PM
DU 861 16 = 1,NA
SIGUK(IS) SIGUKIIS) + S1uli5,10)®EPSUKLIG)
861 CONTINUE
IFIKLU2)25442544255
254 CUNTINUE
LABEL = NODE STRESSES
FA = 454624256062
FB = 635125626225
FC = 626060606060 .
WRITE TAPE 8,KLU9, NAyFAsFByFCo{SIGUK (J1)pJl=1,NA) -
255 CONTINUE ’
CALCULATE MAGNITUDE AND Slum UF tFFECTIVE STRESS AT EACH NUDE
CALCULATE EFFECTIVE STRESSES - MATRIX SGBARN - FRAME SIZE 55 X 1
00 166 I7 = 1,NC
SGBARP(I7) = SGBARNIUIT)

M3 = 3%17
M32 = M3-2
M31 = M3-1

SGBARN( [7)=SQRTF(AL1231(i/)%SIGUK(M32)%92~AL121211T)*SIGUK(M3I2)*
LSIGUK(M31)+AL1223(17)#SIGUK(MIL )*%2¢3 . #ALFA%S (1T7)#SIGUK (M3) #2)
166 CONTINUE 3 v
IFIKLU2)2564256,257
256 CONTINUE
LAGEL = EFF. STRESSES
FA = 252626336062
FB = 635125626225
FC = 626060606060 : :
WRITE TAPE 8,KLU9, NCoFAFByFCy I SGBARNIJL) »J1=1,NC)
257 CONTINUE o
CALCULATE EFFECTIVE INELASTIC STRAIN FOR EACH NUDE - INTERPGLATE
IN TABLE (TSIGN VS. TEPSN)
00 181 18 = 1,4NC ,
SGBARP IS EFFECTIVE STRESS UF PREVIUUS CYCLE
1F(SGBARN( 18)=SGBARP (18) 411,401,401
EFFECTIVE STRESS IS ABOVE PREVIUUS LEVEL
SGBARM IS EFFECTIVE STRESS UF LASI CYCLE TO SHOW AN INCREASE |

08 -

0788
0789
07190
07191
0792
0793
0794
0795
0790
0798
0799
0300
0801
0802
0803
0804
0405
0806
0807
0808
0809
o810

- 0811

oa12
o813
0814
0815
0316
0817
csls

0819
+ 0820

0n21
0822
0823
0824
0825
0826
0827
0828
0329
0830
0831
0832
0833
0834
0835
0836
0837
0838
0839
0840
0841
0842
0843
0844 -




401

402
403

171
172
177

178

1713

175

170

174

415

425
420

411

426
424

181

266

IFUSGBARNL 18)~SGBARM( 18) Jasly4ud, 42
EFFECTIVE STRESS IS ABUVL anct ur PREVIUUS DRUP-UFF, IF ANY
IF(SGBARP(18)~SGBARMI18))403,403,403
SGBARM(I8) = SGHARN(I8)

DU 171 19 = 1,11

ESUPRK =(SGBARN(18)/E) + EPBARP(IS)
IF{ESUPRK-TEPSN(19))1734042yL171
CUNTINUE

GO TO 998

BARSGN = TSIGN(I9)

IF(SGBARN( 18)~TSIGNI2)) 170,077,007
AL1212(18)= 2.¢TALF12(19)
AL1223(18)= TALF12(19)+ TALFZ3419)
AL1231(I8)= TALF12(19)+ TaLF3i(19)
ALFA44(18)= TALF44(19)

CONTINUE

GO TO L74

KKK2 = 19

KKKL = 19 - 1 ,
STNRAT = {ESUPRK-TEPSNIKKKL) /1 TEPSNIKKK2)~TEPSNIKKKL))
BARSGN = TSIGN(KKK1)+(I5aUN(KKK2}=TSIGN(KKK1) )*STNRAT
IFLSGBARNI18)-TSIGNI2)) 170417541175

CONTINUE

ALFAL2 = TALFL2(KKKL)+(TALFLIZ(KKRK2)-TALF12{KKKL))*STNRAT
ALFA23 = TALF23(KKK1)+{TALF23(KKK2)=TALF23(KKK1))*STNRAT
ALFA3]l = TALF31(KKKL)+(TALF31(KKR2)~TALF31(KKK1))®STNRAT

ALFA44{ 18)=TALF44 (KKKL)+{ TALF44 IKKK2)=TALF44(KKKL) ) #STNRAT
AL1212(18)= 2.%ALFA12

AL1223(18)= ALFAL2 + ALFA23

AL1231(18)= ALFA12 + ALFA3L

CONTINUE

GO TO 174

EPBARN{18) = ESUPRK — BAR3GN /7 E

CALCULATE TOTAL EFFECTIVc STRAIN = MATRIX TEFSTN — FRAME SIZE 55X1
TEFSTN(I8) = ESUPRK

TEFSTN(18) = TEFSTN(18) + £PCNKLid)

CALCULATE EFFECTIVE STRAIN (HANGES — MATRIX DELEPN - FRAME 55 X 1
CALCULATE INCREMENTAL EFFECTIVE INELASTIC STRAIN

DELEPN(18) = EPBARN(IS8) - EPBARP(18)

GO TO (420,425) 4424

DELEPN(18) = DELEPN(I8) + EPCNK(18) - EPCNP{I8)

CONTINUE

G0 TO 181 - o

DROP-OFF OF EFFECTIVE STRE>S

OR STILL BELOW THE KNEE UF PREVIUUS DROP-OFF

EPBARN(18) = EPBARP(I8)

TEFSTN(I8) = EPBARP(IB)+{SGBARNI18)/E)
TEFSTN(I8) = TEFSTN(I8) + EPCNK(I8)
DELEPN(18) = 0.0 _

GO TO (424,426),424

DELEPN(18) = EPCNKLIS8) - EPUNPLIY)
CONTINUE

60 TO 181

CONTINUE

IF{KLU2+KLUB) 266,266,267
CONT INUE

vygoed
N34
N8a7
0848
Ub49
1350
0451
0352
0853
G354
0855
0450
24857
0358
0359
0360
0861
NB62
0303
0364
0365
0866
0367

- 0868

0869
0870
0871
cs72
0873
0874
0875
0876
08717
0878
0379
0880
vasl
0382

‘0883

0884
0385
0886
0887
0888
0889
©890
0891
0892
0893
089«
0895
0896
0897
0898
0899
0900
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LABEL = EFF.PLASTIC STRAlN
FA = 2526206334743

. FB = 216263312360

207
254

259
862

191

192
260

FC = 626351213145

WRITE TAPE 8,KLU9, NCvPAnPDvFCo(EPﬂARN(Jl,le=loNC)
CONTINUE

IFIXKLU2)258+258,259

CUNTINUE

LABEL = TOTAL EFF. SIRAIN

FA = 634663214360

FB = 292626336062

FC = 635121314560

WRITE TAPE 8,KLU9, NCol aoFbDoFLe LTEFSTNIJL) o Ji=1,NC)
CONTINUE : o

N0 862 125=1,NC

TEFSTN(125) = 0.0

CALCULATE NODE STRAIN CHamnuwt - nululx DELEPK - FRAME SI2E l6% X 1
00 191 111 = l,NC

TEMPA = DELEPNILLLII/ SuvaRN(I11)

M3 - = 3=fl1l

M32 = M3-2

M3l = M3-] ‘
‘DCLFPK(H32)=TEHPA‘(AL}7&1(llA)')lbUK(H!Z)’.S'ALlZlZ(lll)*SIbdK(H3l
i

DELEPK(M3L)=TEMPA®(ALI223(114)*54buR(H31 )= SFALIZ1201L1I#STGUKINSY
1)

DELEPK(M3) =TEMPA®{3.%ALFA44(111)*31GUK(M3))

CUNTINUE

CALCULATE NODE PLASTIC SIKaIN - MATRIX EPSUK - FRAME SIZE 165 X 1
CALCULATE NUDE PUINT STRAINS

DO 192 123=1,NA

EPSUK (123) = EPSUK (123) # UELEPR(I23]

IF (KLU2+KLUB) 260,260,261

CONTINUE

LABEL = EFF.STRAIN CHANGES

FA = 252626336263

FB = 512131456023

FC = 302145272562 '

WRITE TAPE BoKLU9y  NCoFasFBoFCe (DELEPNI{JL) 4 J1=1,NC)

LABEL = NUDE STRAIN CHANGE

. FA = 454624256062

261

F8 = 635121314560
FC = 233021452725 : :

WRITE TAPE 8,KLU9, NAGFAyFBoFCy IDELEPK(JL),J1=1,NA)

LABEL = NUDE INELAS.STRAIN

FA = 454624256031

FB = 452543216233

FC = 626351213145 ‘

WRITE TAPE 8,KLU9, NA»FAoFbsFCo (EPSUK (J1)4J1=1,NA)

CONTINUE ‘

CALCULATE TUTAL NODE STRAINS —- MATRIX TOTEPS ~ FRAME SIZE 165 X 1
D0 201 Il4=1,NC

M32 = 3¢114-2

M3l = 3%ilée-1

M3 = 38014 o ‘

TOTEPS(M32) =EPSUK (M32)+SIuUKIM32) /E ~GNUSSIGUK(M31)/E

110

0901
0902
V903
0904
090%
0906

0907

0908
0909
0910
N9l
0912
0913
0914
0915
0916
0917
0918
0919
0920
0921
0922
0923
0924
0925
0926
0927
0928
0929
0930
0931
0932
0933
0934
0935
0936
0937
0938
0939
0940
0941
0942
0943
0944
0945
0946
0947
0948
0949
0950
0951
0952
0953
0954
0955
09%s

- o L e i iyt W'ﬂ.«i\lﬂ
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201
262

263

268

273

269

371
3710

422
421

423
205

206

209

207

210

208

998

TOTEPSIMIL)I=EPSUK (M31)+oiuUKimMil)/E ~GNUSSIGUKIM3E2)/E
TOVEPS(M3 )=EPSUK (M3 )+5I0UKIMI )/bHRHDD
1FIKLU2)262,262,263

CUNTINUE

LABEL = TOT. NUDE STRAINS

FA = 634663336045

FB = 462425606263

FC = 512131456260 ’

WRITE TAPE 8B,XLU9, NAorAoFB s FLo LTOTEPSIJL) s l=1¢NA)
CONTINUE ' .
IFIKLU2)268,268,269

CONTINUE

XKLU9 = 3

KLUSIZ = 2

WRITE TAPE 8eKLUIKLUSIZs RoPMsPMPH,TINZ

IFININCLD) 26992694273

CONTINUE

KLU9 = &

KLUSIZ = 2

WRITE TAPE BvKLU9'KLUSlZvPH.PHoPHu“(NKCY.NleUT
CONTINVUE
IF(NINCLD)370,370,371
IFININCSW-2)422,370+422
CONTINUE

IF(SENSE SWITCH 6)421,422
CONTINUE

GO To 151
!F(KLUZ)523Q5231208
CUNTINUE

KLU9 =7

FA = 1717117779777 o . . e
DO 206 125 = 1,10

WRITE TAPE 8'KLU9'KluquﬂlFlgf"FA'FA’FﬂgFA'F‘QFA'FA

END FILE
END FILE
END FILE
END FILE
ENO FILE
END FILE
REWIND 8
IF{SENSE SWITCH 6)207,209

IF1J24-3)210,207,210 :

CONTINUE L
PAUSE 1 ‘

REWIND 11

CALL CHAIN{5,3)

CONTINUE

CALL CHAIN{6,3)

KERRSNW = 2 )
KERRSW SET TO 2 TO MAKE KLUZ s 0 AND PRINT 4 CYCLE

GO TO 151

KLU9 = 6

XLUSIZ = 3

WRITE TAPE 8+ KLU9,KLUSIZ, K’le.PH.thPRK'SGd‘RN‘IB)QTIHE
GO 10 ¢

ENDIlolvO'OoOvovlvlﬁo L090s0sU40)

@ oo
i
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i

LI1ST3

0957

‘0958

0959
0960
0961
0962
0963
0764
0965
0966
0967

0968

0969
0970
U971
0972
0973
0974
0975
0976
0977
0978
N9y
0980
0981
09482
0983
c984
0985
0986
0987
0988
0989
0990
0991
0992
0993
0994
0999
6996
0997
0998
0999
1000
1col
1002
1003
1004
1005
1006

1007

1008
1009
1010
1011

1013
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A el ae AW deade e S




SUBRUUTINE OUTPUT(VALUEL,STEPLyALUL) - 1014
THIS SUBROUTINE SETS KLUl = U IF ¥Hc CURPENT CYCLE IS TO BE PRINTED 1015

VALUL = A3SF(VALUE1L) ) 1016
. STEP = ABSF{STEP1) ‘ ' 1017
102 IF(VALUE-STEP)131,100,100 . . 1018
100 NTESIL = (VALUE/STEP)I*1.00001} o ) 1019

NTEST2 = (VALUE/STEP)+.994 1920 .

IFINTESTL=NTEST2)131+130,1310 ) 1021

- 130 KLU =0 . ‘ ‘ 1022

GO T0 135 . : 1023
131 KLul = 1 ) 1024
135 RETURN . 1025

END(1}‘90'09010'1'19091v090.°'010) (.

CHAINI(S,3) . ‘ 1027

LIS18 : ‘ , 1028




451285  GRUNMAN AIRCRAFY ENGINLLRING CORP, DECK MO, 4§28  LINK. S
CQS} 85 MATRIX ANALYSIS OF INELASTIC PLATE —~ LIMK 5 —~ W[TH CREEP 1030
THES LINK MRITES A SAVE 'APE FOR RESTART 1031 ‘
- COMMON TEFSTN, TOTEPS 1032
CUMMON KLU4, KLUS KLU6, KLUS, NA, NC, K 1033
COMMON KERRSW, NINCLD, KSET, PHy Ey _ GNUy SHRMOO _ = 1034
COMMON ALPHA, BETA, GAMMNA, TIME, KLUISO . 1035
.- .. _COMMON PHTIM, KPMTM, SiM, S1Js  TSIGN, TEPSN 1036
COMMON TALF12, TALF23, TALF3ls TALF44 . 1037
COMMON AL1212, AL1223, AL1231, ALFA44 e 1038
DIMENSION TALFL2U1E),TALF23010)¢TALF31(11),TALFA4(11) 1039
D!!ﬁﬂ;!QﬂgALIZL;]55"AL1125(55)1‘L1é}1(5531‘LFA0‘!55L_ e .. 1040
COMMON 3SIGUK, EPSUK 1041
__COMMO B8AR GBARP DARM LEPN 1042
COMMON EPCNK,e EPCNP ] 1043
EQUIVALENCE (TIMKL,TEFSTN) 4 TQTEPS,0ELEPK) —e e e 1084
c THESE FOUR ARRAYS ARE EQUIVALENCED TO SAVE CORE SPACE. 1045
i DIMENSION TIMK1(55)TEFSTIN(55) 4 TOTEPSL165) ,,DELEPK(165) 1046
DIHENSION PMTMUL1093) o KPMTN(LUD o SIMULO5)+STJ1185,165),1SIGNILL) 1047
~_DIME PSNI IGUK(]l6 o 65 GBARNLSS GBARP (55 048
DIHENSION SGBARH(55).EPBARN(55).EPBARP(SS)qDELEPNCSSDyEPCNK(SSI 1049
DIMENSION EPCNP(55) _ ‘ — e . -.. . los50
REWIND 11 1051
WRITE QUTPUT TAPE 11.:33 e e i i a2 3052
END FILE 11 : N 1053
_ KLYUS K KERRS K
1GNU SHRMOD ¢ ALPHA ¢ BETA s GAMMA TIMEKLUISO ' . 1055
WRITE TAPE L1,PMTM _ . el e —— : 1056
WRITE TAPE 11,KPMTM 1057
WRETE TAPE Ml,SIM 1058
WRITE TAPE 11,814 . ' 1059
._MWRITE TAPE 11,TSIGN i . 1060
WRITE TAPE 11,TEPSN : . 1061
MRITE TAPE_ 11,TALF12 . e ‘ 1062
. WRITE TAPE 11,TALF23 : : 1063
WRITE TAPE M1 VALF3) = ___ .. .. _....1064
MRITE TAPE Lll.TALF44 . ’ - 1065
WRITE VAPE 11,AL1212 1066
. WRITE VAPE 1ll.,ALl223 1067
!R!IE_ILEE.LHALIZ3I ) ' —— . 1068
WRITE TAPE 11,ALFA%4 S 1069
WRITE TAPE 1l,SIGUK : 1070
WRITE TAPE 11,EPSUK R 1071
. WRITE TAPE 11,SGBARN ‘ : 1072
. WRITE TAPE 11l+SGBARP ) 1073
_ WRITE TAPE 11,SGBARM o 1074
WRITE TAPE 11,EPBARN 1075
WRITE TAPE 11,EPBARP : 1076
HRITE TAPE 1l.DELEPN ’ 1077
__WMRITE_TAPE 11,EPCNK . 1078
WRITE TAPE 11.,EPCNP ) : 1079
END_FILE 11 . ..1o80
END FILE 11 ‘ 1 1081
END FILE 11 : 1082
Cc SUBROUT INE RUN REWINDS AND UNLOADS THE DESIGNATED TAPE 1083
P CALL RUNM (11} 1084
PRINT 32 : 1085
§ KERR3NW = 5 . 1086
_ CALL CHAIN{6,3) 1087
: 32 FORMAT(//752H & & & SAVE TAPE A—6 FUR RESTARTY AT THIS POINT * % &) 1088
33 FORMATIGTHCONTIN 99 SAVE THIS TAPE FOR RERUN DECK 45128 INELAST 1089 _
LIC ANALYSIS ) 1090
H END(1414090909041514091504050,0,0) ‘
¥ L CHAINt6,3) 1092
; . , , 3




451280 GRUMMAN AIRCRAFI ENGINEt“‘NU Cunb,. DECK Nu. 45128 LINK &

- C451286 MATRIX ANALYSIS OF Ineeasliv PLATE = LINK 6 - WwITH CREEP

C . THIS LINK CUNVERTS HINARY uulPul un TAPE 8 TO HCL

C ON THE MONITOR PRINT TApPc
CUMMON TEFSTN, TOTEPS . :
CUMMUN KLU4, KLUS, | NRVE KRLUB,y NA, NC» K
COMMON KEXRSWy NINCLD, Rotis PMy €y GNU, SHRMN)

COMMON  ALPHA, 3ETA, ULAHMA, TIME, KLUISD
DIMENSIUN TEFSTN(55),TOTeP>llo5) ’
DIMENSION ARRAY{165)4L1Si(l0%)
EQUIVALENCE (FA,EFA) s LFBsaFod s (FLeLFC) s (ARRAY,LIST) -
REWIND 8 . o
101 READ TAPE B,KLU9KLUSIZ FugFa,FCe LARR Y (J1)edl=1,KLUSIZ)
IF(KLU9)101,101,106 °
106 IF(KLU9-9)111,111,101 ‘ .
111 GO TOU121,122¢12391244122942091027+128,129)4KLU9
121 CUNTINUE
WRITE OUTPUT TAPL 6.2£.FA,rnaFL.~KAA7(l),ARRAY(Z)
‘ GO TO 101
122 CONTINUE _ o
" wRITE OUTPUT TAPE o.zx.ra.ﬁu.rc.«uunAv(be.Jl=l.xLusxz)
GO 10 101
123 CUNTINUE '
NRITE OUTPUT TAPE 6¢31¢1FAJARKAYLL) ARRAY(2)
G0 TO ‘101 '
124 CONTINUE
WRITE OUTPUT TAPE 6432,L15T8L)0LIST12)
60 TO 101
‘126 CONTINUE v E ‘
NRITE QUTPUT TAPE 6,124ARRAYLL)sARRAY(2)
_MRITE OUTPUT TAPE 6+13,1FAslEbsFCeARRAY(3)
GO YO 10t : :
127 CONTINUE
PRINT 14
WRITE QUTPUT TAPE 6,14
REWIND 8
IFIKERRSV=~5)132,131,132
131 PRINT 33 ' ‘
132 CALL EXIT
125 CONTINUE
128 CONTINUE
129 CONTINUE
GO 10 101
12 FORMAT{46H VALUE NOT FOUMU IN TAsLE FOR EPSILON BAR N = ,E15.8,
L19H  ( SIGMA BAR N = 4E15.852H ) ) .
13 FORMAT(16H CYCLE NUMBER = ,15,20H ELEMENT INDEX = .14.17n LO
1AD LEVEL = 4F9.2,411H Tint = JFde4)
14 FORMATI76H DO NOT SAVE TafPt 6-l — AT HAS BEEN COUMPLETELY PROCESSEV
.1 ONTO THE PRINT TAPE)
21 FORMAT{(/Z/ IX93A605(1PEL6LT)/LL9Ky2ELGLT))
22 FORMAT(//1X33A692XsF12.2,5X96HILMc 24F12.6)
31 FORMAT(2HO ,1642TH CYCLES CUOMPLETcD = LOAD = ,F 9.2,
1 12H TIME = ,F 8.4)
32 FORMAT(1H® ,68X,6HCYCLE 913¢4H OF 413,27H AT THIS LUAD OR TIME LEVE
1)
33 FORMAT(//52H % * * SAVE TAPE A-o FOR RESTART AT THIS PUINT & * @)

END(lvanonOval'10011101U|Q'0'0)

* DATA

114

1095
1096
10917
1098
1299
1100
1101
1102
1103
1104 .

"110%5

1106
1107
1108
1109
1110
1111
1112
1113
1114

‘1115

111e
1117
1118
1119
1120
1121
1122
1123
1124
11258
1126
1127
1124
1129
1130
1131
1132
1133
1134
1135
1130
1137
1138
1139
1140
1141

1142

1143
1144
1145
1146
1147
1148
1149

1151




APPENDIX VI
STRESS DISTRIBUTIONS DUE TO UNIT INITIAL STRAINS

The basic matrix utilized in the nonlinear and inelastic analysis
described in this report is the initial strain influence coefficient
matrix [ruv]. Elements of this matrix provide the ubh stress camponent

caused by & unit initial strain at the vth stress location. The first
description and derivation of this useful matrix was made by Denke in
1954, Reference 20. The matrix is generated by a structursl analysis
which msy be of the force or stiffness type.

A. Force Method Application

The method utilized here is & simple extension of redundant
structure snalysis. Essentially, the additional work involved is the
calculation of displacements at the applied loads and redundants in the
statically determinant atructure caused by initisl strains. These dis-
placements are cambined with those caused by the applied loads and re-
dundants. The finsl step is to adjust the msgnitude of the redundants
to eliminate the total displacements at the redundants. PFram this point
the determination of stress distributions for the redundant structure
i8 carried out as before. ‘

The displecement in the statically determinate structure at the tth ‘
applied losd or redundant due to initial strsin can be expressed by use
of the principle of virtusl work as follows:

Oy = ; /(‘cxt.cn)dv | | (1)

Yolume of
ath member

18 the displacement at the t'C unit applied

In the above expression, LA
load or redundant due to the vth initial strain, Ot i3 the direct stress

in the &' member due to the unit losd, and ¢_, 1s the initisl strain in
the ath member at the corresponding stress point. The sumation Za:
indicates that the virtusl work in all members affected by the induced
strain, ¢ xv,.'nmst be considered.

Equation A-1l 1s written for the uniaxisl direct stress conditiom
that is camonly assumed to existv in ber members as pictured in Figure
(1). The effect of & shear panel has been amitted in the derivation
for simplicity. Terms necessary for inclusion of shear may be derived
in a similar manner. ‘

15




gsectional area A, linearly varying axial load Gxt'A’ and linearly varying

|

\

Suppose that the ath member of a structure 1s a bar, with cross .
initlal strain ¢’

I —

‘v €ov
L }

I
Nt Yo

Then

1
%t = K{Ylt(l -+ th%}

€xv T elv(l ';) + ‘2\5

and after eveluation

. L L
f Ot Sy = [Yat Yat]| 813 210 {‘1»—}

Volume of Laal I'322 v
ath member
where
L =L 4
11 %2 3
L L =
812 % %

The L‘i matrix can be similarly determined for other types of

- structural elements. For rectangular shear panels, of dimensions b and
h, 1t can be shown that the Lai.‘l' factor for shear strain y__, 1s bh,

the panel flat plate area. For nonorthogonal structure (swept panels)
other L‘i P factors may be developed. The sum of such matrices for the

entire structure is designated [I'i J]°

16




The matrix expression for the displacements at ell of the applied
loads &nd redundents due to unit initial strain is

T

[ )-bepell=]

The sv's are the initial strains corresponding to each of the member
loads q\r

Utilizing Equation A-2, the redundents are evaluated by

[arm; v Eara] Fa
. e y=0
v
9
the solution of which is
. roir ]l
{qs} - [Bm d sv] <,

where

i) - ol e ]

The member loads in the redundant structure become

SRINES &
o - e v 2]

Member stresses are obtained by pre-multiplying member loads by [ﬂu] ’
the reciprocal values of appropriate bar areas and skin gages.

[Fm i ru;r] - [au] ["5. i riv] |
I o S YL B

ur

where

}
i
.




Digital camputer programs which are available for conventional
force method analyses may be used to determine the I‘m, ruv matrices.

This is readily accuamplished by redefining several input matrices.

(1) replace , the usual unit load distribution in the static-
Yinm
ally determinate structure due to applied losds by

(21) x (m + 1)

the unit disgonal matrix I has as many elements as there are
member loads in the structure.

(2) replace [¥;]> the usual unit load distribution in the static-
. ally determinate structure due to redundants by

0 21 xr

(3)  replace (o, J], the member flexibility matrix by

oy Ly
Ly O
v 2ixe2i
The L, values are the geametricel factors of Equation A-2. Stralghtforward

iv .
matrix operation will now yleld a load distribution metrix for the re-
dundant structure which may be identified as follows:

Tim_} Tiy
o |1

The upper portion [T, i Iy,] are the values defined by Equation A-3,
and stresses may be obtained by using Equation A-k.

N




B. Direct Stiffness Method

Consider & truss shown in Figure (2a) where a1l the nodes are
"locked" (prevented fram displacing). If a strain ¢, 1s induced in a

particular member it will produce
a stress in only that member equel
to O, = = Eeo since all the nodes .

are locked. This stress requires
node forces as shown in Figure (2b).
} The negatives of these node forces
are applied to the "unlocked" structure
all nodes locked and the stresses in all the members,
(a) - (Figure 2¢c) are computed. The
final stress will be the superpo-
sition of the "locked in" stresses
and the stresses produced by the
node forces acting on the unlocked
structure. That is ‘

roduces o
) P o

t ) 0T=O"+O;

% read

k Applied loeds

produce o

(v)

1

(c) Figure 2
Derivation of [T ] ‘a.nd ()
Consider an element of the total structure, let this element be

supported in a statically determinate fashion. The total strain e 1s
then written as the sum of two strains namely 'co, ~ the strains due to

gtresses, and LR - a set of induced .strains. Thus

e} = fedt el B ,
Rewriting this, | '
fe,} = (e - (¢} B-2
19




The stresses may be expressed in terms of the strains by using Hooke's
law, v

{0} = (e} B3
Thus

(o} = [l{e} - [olle} | B-b

{e] (the total strains) may be expressed in terms of the displacements
of the nodes that affect the particular member in question. That is

() = [ei8) B-5

It should be noted that the expression contains the basic assumption
governing the behavior of the element. For example, for a trlangle or
bar element it will contain the assumption that the strains are constant
throughout the element. Substituting this into Equation B-4

{o}

Ial{e} - Dblle) B-6a

[sq1{8} - [bl{e } B-6b

Fram virtual work it can be shown that the nodal forces {£1,
associated with {6}, may be expressed in terms of the stresses by:

(e} - f/'[aﬁo}av | - B-7
| ol

Substituting B-6a into B-T yields:

[

[a]T[b]{eo]dv , B-8
Vol

(£} - vﬁa]T[‘b][a]{tS]dV ;
ol .

For simple elements such as bars or trlangles where the stralns are
assumed to be constant over the element none of the matrices within the
integrals will be functions of the coordinates x, y or z and hence they
are independent of the integration. The first portion of (B-8) ylelds
the standard stiffness matrix [k] while the second portion ylelds the
nodsl forces due to induced strains {e¢_}.

(f} = ()8} - Vialode)  Beo

120
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In this expression, V is the volume of the clement. Noting that
T; T T , .
(eI = [oiced]” = o,1" vtetes

(g} = (K108} - VIs 1T (e ) : B-10

. 'The total stiffness matrix for the entire structure is ohtained by
superposing the stiffnesses for the individual elements to yleld:

(7} = (KMo} - (8,1 Ve p) B-11

Where {F] represents all of the external nodal forces, {A} represerts
all of the nodal displacements, {soT} represents a column of all the

induced strain components and [V] is a diagonal matrix containing the

values of the volumes of the varlous elements. (Note that for a triangle,

where three strain components may be induced, the volume will appear
three times).» [Sd] is the totel stress matrix arrsy which is obtalned

by proper arrangement of the individual stress matrices [sd].
Applying boundary conditions (via matrix [BC]) to equation {B-11)

and introducing the applied extermal loads {P}, with nodal distribution
[1], yielas:

e} = [eel’reiselia') - el e T IVI{e ) B-12

- which mey be solved to give the allowed nodal displacements under the
boundary conditions: ‘

) = [, T3 + 0K 1Bl 8,1 Vile ;B3
where :

(K] = [Eel’[xIEe]
for the tofal structure, B-6b.may‘be written as:
fo} = T8,00a} - [Blleyd B-14

where B] 18 a diagonal block of the elastic relations [b] for each
member. Substituting (B-13) into (B-14) and using the relation {A} =

(Bc}{a'} ylelds:

\

it
PRt

N

.

N

o

ErT .}.:.m.-»‘un}i Fans i



(og) = tsdltncmcn]‘lpr;m}' |
! [Esd][m](&]fi[ﬁcthsdiTWJ - [B]]{edr} R ST
which, to use the previous n;tafoi;:n, mely be written 8s:
{0} = [rm-}{me [ruv]iev} o B-16

The first matrix,‘[rhm],of %pis expression, is the conventional distri-

bution obtained for unit applied loads as indicated in Section A of this
appendix. oL '
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